login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053238
First differences between numbers k for which sigma(k) > sigma(k+1).
10
2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2
OFFSET
1,1
COMMENTS
It seems that the expansion consists of only {1,2,3,4}.
The first exception is a(18360922) = 6, corresponding to the gap from 36721680 to 36721686. - Charles R Greathouse IV, Mar 09 2014
The asymptotic mean of this sequence is 2 (Erdős, 1936). - Amiram Eldar, Mar 19 2021
LINKS
Paul Erdős, On a problem of Chowla and some related problems, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 32, No. 4 (1936), pp. 530-540; alternative link.
FORMULA
a(n) = A053226(n+1) - A053226(n).
MAPLE
with(numtheory): f := [seq( `if`((sigma(i) > sigma(i+1)), i, print( )), i=1..5000)];
seq( f[i+1] - f[i], i=1..2000);
MATHEMATICA
Differences[Select[Range[250], DivisorSigma[1, #]>DivisorSigma [1, #+1]&]] (* Harvey P. Dale, Apr 22 2011 *)
Differences[Flatten[Position[Partition[DivisorSigma[1, Range[300]], 2, 1], _?(#[[1]]>#[[2]]&), 1, Heads->False]]] (* Harvey P. Dale, Oct 18 2020 *)
PROG
(Haskell)
a053238 n = a053238_list !! (n-1)
a053238_list = zipWith (-) (tail a053226_list) a053226_list
-- Reinhard Zumkeller, Oct 16 2011
(PARI) last=ls=1; for(n=2, 200, ns=sigma(n+1); if(ls<=ns, ls=ns; next); ls=ns; print1(n-last", "); last=n) \\ Charles R Greathouse IV, Mar 09 2014
KEYWORD
nonn,nice
AUTHOR
Asher Auel, Jan 10 2000
STATUS
approved