login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053230
First differences between numbers k for which sigma(k) < sigma(k+1).
10
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2
OFFSET
1,3
COMMENTS
It seems that the expansion consists of only {1,2,3,4}.
The first exception is a(10010491) = 6, corresponding to the gap from 20021153 to 20021159. - Charles R Greathouse IV, Mar 09 2014
The asymptotic mean of this sequence is 2 (Erdős, 1936). - Amiram Eldar, Mar 19 2021
LINKS
Paul Erdős, On a problem of Chowla and some related problems, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 32, No. 4 (1936), pp. 530-540; alternative link.
FORMULA
a(n) = A053224(n+1) - A053224(n).
MAPLE
with(numtheory): f := [seq( `if`((sigma(i+1) > sigma(i)), i, print( )), i=1..5000)];
seq( f[i+1] - f[i], i=1..2000);
MATHEMATICA
Differences[Select[Range[250], DivisorSigma[1, #]<DivisorSigma[ 1, #+1]&]] (* Harvey P. Dale, Apr 30 2011 *)
PROG
(Haskell)
a053230 n = a053230_list !! (n-1)
a053230_list = zipWith (-) (tail a053224_list) a053224_list
-- Reinhard Zumkeller, May 07 2012
(PARI) last=ls=1; for(n=2, 200, ns=sigma(n+1); if(ls>=ns, ls=ns; next); ls=ns; print1(n-last", "); last=n) \\ Charles R Greathouse IV, Mar 09 2014
KEYWORD
nonn,nice
AUTHOR
Asher Auel, Jan 10 2000
STATUS
approved