login
A048766
Integer part of cube root of n. Or, number of cubes <= n. Or, n appears 3n^2 + 3n + 1 times.
45
0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
OFFSET
0,9
LINKS
K. Atanassov, On the 100th, 101st and 102nd Smarandache Problems, On Some of Smarandache's Problems, American Research Press, 1999, pp. 57-61. Reprinted in Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 3, 94-96.
FORMULA
G.f.: Sum_{k>=1} x^(k^3)/(1-x). - Geoffrey Critzer, Feb 05 2014
a(n) = Sum_{i=1..n} A210826(i)*floor(n/i). - Ridouane Oudra, Jan 21 2021
MAPLE
A048766 := proc(n)
floor(root[3](n)) ;
end proc:
seq(A048766(n), n=0..80) ; # R. J. Mathar, Dec 20 2020
MATHEMATICA
a[n_]:=IntegerPart[n^(1/3)]; lst={}; Do[AppendTo[lst, a[n]], {n, 0, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 02 2008 *)
PROG
(Haskell)
a048766 = round . (** (1/3)) . fromIntegral
a048766_list = concatMap (\x -> take (a003215 x) $ repeat x) [0..]
-- Reinhard Zumkeller, Sep 15 2013, Oct 22 2011
(PARI) a(n)=floor(n^(1/3)) \\ Charles R Greathouse IV, Mar 20 2012
(PARI) a(n) = sqrtnint(n, 3); \\ Michel Marcus, Nov 10 2015
(Magma) [n eq 0 select 0 else Iroot(n, 3): n in [0..110]]; // Bruno Berselli, Feb 20 2015
(Python)
from sympy import integer_nthroot
def a(n): return integer_nthroot(n, 3)[0]
print([a(n) for n in range(105)]) # Michael S. Branicky, Oct 19 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Charles T. Le (charlestle(AT)yahoo.com)
EXTENSIONS
Additional comments from Reinhard Zumkeller, Oct 07 2001
More terms from Benoit Cloitre, Jan 30 2003
STATUS
approved