OFFSET
1,2
COMMENTS
If the prime power factors p^e of n are replaced by prime(e)^pi(p), then the prime terms q in the sequence pertain to 2^m with m > 1, since pi(2) = 1. - Michael De Vlieger, Apr 25 2017
Also the Heinz number of the integer partition obtained by applying the map described in A217605 (which interchanges the parts with their multiplicities) to the integer partition with Heinz number n, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The image of this map (which is the union of this sequence) is A130091. - Gus Wiseman, May 04 2019
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
Stephan Wagner, The Number of Fixed Points of Wilf's Partition Involution, The Electronic Journal of Combinatorics, 20(4) (2013), #P13.
EXAMPLE
For n=6, 6 = (2^1)*(3^1), a(6) = ([first prime]^pi(2))*([first prime]^pi(3)) = (2^1)*(2^2) = 8.
From Gus Wiseman, May 04 2019: (Start)
For n = 1..20, the prime indices of n together with the prime indices of a(n) are the following:
1: {} {}
2: {1} {1}
3: {2} {1,1}
4: {1,1} {2}
5: {3} {1,1,1}
6: {1,2} {1,1,1}
7: {4} {1,1,1,1}
8: {1,1,1} {3}
9: {2,2} {2,2}
10: {1,3} {1,1,1,1}
11: {5} {1,1,1,1,1}
12: {1,1,2} {1,1,2}
13: {6} {1,1,1,1,1,1}
14: {1,4} {1,1,1,1,1}
15: {2,3} {1,1,1,1,1}
16: {1,1,1,1} {4}
17: {7} {1,1,1,1,1,1,1}
18: {1,2,2} {1,2,2}
19: {8} {1,1,1,1,1,1,1,1}
20: {1,1,3} {1,1,1,2}
(End)
MAPLE
A048767 := proc(n)
local a, p, e, f;
a := 1 ;
for f in ifactors(n)[2] do
p := op(1, f) ;
e := op(2, f) ;
a := a*ithprime(e)^numtheory[pi](p) ;
end do:
a ;
end proc: # R. J. Mathar, Nov 08 2012
MATHEMATICA
Table[{p, k} = Transpose@ FactorInteger[n]; Times @@ (Prime[k]^PrimePi[p]), {n, 58}] (* Ivan Neretin, Jun 02 2016 *)
Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; e >= 0 :> Prime[e]^PrimePi[p]] &, 65] (* Michael De Vlieger, Apr 25 2017 *)
CROSSREFS
KEYWORD
easy,nonn,mult
AUTHOR
EXTENSIONS
a(1)=1 prepended by Alois P. Heinz, Jul 26 2015
STATUS
approved