login
A304408
If n = Product (p_j^k_j) then a(n) = Product ((p_j - 1)*(k_j + 1)).
6
1, 2, 4, 3, 8, 8, 12, 4, 6, 16, 20, 12, 24, 24, 32, 5, 32, 12, 36, 24, 48, 40, 44, 16, 12, 48, 8, 36, 56, 64, 60, 6, 80, 64, 96, 18, 72, 72, 96, 32, 80, 96, 84, 60, 48, 88, 92, 20, 18, 24, 128, 72, 104, 16, 160, 48, 144, 112, 116, 96, 120, 120, 72, 7, 192, 160, 132, 96, 176, 192
OFFSET
1,2
FORMULA
a(n) = A000005(n)*abs(A023900(n)) = A000005(n)*A173557(n) = A000005(n)*A000010(A007947(n)).
a(p^k) = (p - 1)*(k + 1) where p is a prime and k > 0.
a(n) = 2^omega(n)*phi(n) if n is a squarefree (A005117), where omega() = A001221 and phi() = A000010.
EXAMPLE
a(20) = a(2^2*5) = (2 - 1)*(2 + 1) * (5 - 1)*(1 + 1) = 24.
MAPLE
a:= n-> mul((i[1]-1)*(i[2]+1), i=ifactors(n)[2]):
seq(a(n), n=1..80); # Alois P. Heinz, Jan 05 2021
MATHEMATICA
a[n_] := Times @@ ((#[[1]] - 1) (#[[2]] + 1) & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 70}]
Table[DivisorSigma[0, n] EulerPhi[Last[Select[Divisors[n], SquareFreeQ]]], {n, 70}]
PROG
(PARI) a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); (p-1)*(e+1))} \\ Andrew Howroyd, Jul 24 2018
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, May 12 2018
STATUS
approved