|
|
A000026
|
|
Mosaic numbers or multiplicative projection of n: if n = Product (p_j^k_j) then a(n) = Product (p_j * k_j).
(Formerly M0467 N0171)
|
|
24
|
|
|
1, 2, 3, 4, 5, 6, 7, 6, 6, 10, 11, 12, 13, 14, 15, 8, 17, 12, 19, 20, 21, 22, 23, 18, 10, 26, 9, 28, 29, 30, 31, 10, 33, 34, 35, 24, 37, 38, 39, 30, 41, 42, 43, 44, 30, 46, 47, 24, 14, 20, 51, 52, 53, 18, 55, 42, 57, 58, 59, 60, 61, 62, 42, 12, 65, 66, 67, 68, 69, 70, 71, 36
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) = n if n is squarefree.
a(2n) = 2n if and only if n is squarefree. - Peter Munn, Feb 05 2017
|
|
REFERENCES
|
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
n = Product (p_j^k_j) -> a(n) = Product (p_j * k_j).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)^2/2) * Product_{p prime} (1 - 3/p^2 + 2/p^3 + 1/p^4 - 1/p^5) = 0.4175724194... . - Amiram Eldar, Oct 25 2022
|
|
EXAMPLE
|
24 = 2^3*3^1, a(24) = 2*3*3*1 = 18.
|
|
MAPLE
|
A000026 := proc(n) local e, j; e := ifactors(n)[2]:
mul(e[j][1]*e[j][2], j=1..nops(e)) end:
|
|
MATHEMATICA
|
Array[ Times@@Flatten[ FactorInteger[ # ] ]&, 100 ]
|
|
PROG
|
(PARI) a(n)=local(f); if(n<1, 0, f=factor(n); prod(k=1, matsize(f)[1], f[k, 1]*f[k, 2]))
(Haskell)
a000026 n = f a000040_list n 1 (0^(n-1)) 1 where
f _ 1 q e y = y * e * q
f ps'@(p:ps) x q e y
| m == 0 = f ps' x' p (e+1) y
| e > 0 = f ps x q 0 (y * e * q)
| x < p * p = f ps' 1 x 1 y
| otherwise = f ps x 1 0 y
where (x', m) = divMod x p
a000026_list = map a000026 [1..]
(Python)
from math import prod
from sympy import factorint
def a(n): f = factorint(n); return prod(p*f[p] for p in f)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice,mult
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Example, program, definition, comments and more terms added by Olivier Gérard (02/99).
|
|
STATUS
|
approved
|
|
|
|