|
|
A000029
|
|
Number of necklaces with n beads of 2 colors, allowing turning over (these are also called bracelets).
(Formerly M0563 N0202)
|
|
40
|
|
|
1, 2, 3, 4, 6, 8, 13, 18, 30, 46, 78, 126, 224, 380, 687, 1224, 2250, 4112, 7685, 14310, 27012, 50964, 96909, 184410, 352698, 675188, 1296858, 2493726, 4806078, 9272780, 17920860, 34669602, 67159050, 130216124, 252745368, 490984488
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
"Necklaces with turning over allowed" are usually called bracelets. - Joerg Arndt, Jun 10 2016
|
|
REFERENCES
|
J. L. Fisher, Application-Oriented Algebra (1977), ISBN 0-7002-2504-8, circa p. 215.
Martin Gardner, "New Mathematical Diversions from Scientific American" (Simon and Schuster, New York, 1966), pages 245-246.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.
|
|
LINKS
|
Zhe Sun, T. Suenaga, P. Sarkar, S. Sato, M. Kotani, and H. Isobe, Stereoisomerism, crystal structures, and dynamics of belt-shaped cyclonaphthylenes, Proc. Nat. Acad. Sci. USA, vol. 113 no. 29, pp. 8109-8114, doi: 10.1073/pnas.1606530113.
Eric Weisstein's World of Mathematics, Necklace
Eric Weisstein's World of Mathematics, e
|
|
FORMULA
|
a(n) = Sum_{d divides n} phi(d)*2^(n/d)/(2*n) + either 2^((n - 1)/2) if n odd or 2^(n/2 - 1) + 2^(n/2 - 2) if n even.
G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 2*x^n)/n + (1 + x)^2/(1 - 2*x^2))/2. - Herbert Kociemba, Nov 02 2016
a(0) = 1; a(n) = Sum_{k=1..n} 2^gcd(n,k)/(2*n) + either 2^((n - 1)/2) if n odd or 2^(n/2 - 1) + 2^(n/2 - 2) if n even.
a(0) = 1; a(n) = A000031(n)/2 + (2^floor((n+1)/2) + 2^ceiling((n+1)/2))/4. See A051137. (End)
|
|
EXAMPLE
|
For n=2, the three bracelets are AA, AB, and BB. For n=3, the four bracelets are AAA, AAB, ABB, and BBB. - Robert A. Russell, Sep 24 2018
|
|
MAPLE
|
with(numtheory): A000029 := proc(n) local d, s; if n = 0 then return 1 else if n mod 2 = 1 then s := 2^((n-1)/2) else s := 2^(n/2-2)+2^(n/2-1) fi; for d in divisors(n) do s := s+phi(d)*2^(n/d)/(2*n) od; return s; fi end:
|
|
MATHEMATICA
|
a[0] := 1; a[n_] := Fold[ # 1 + EulerPhi[ # 2]2^(n/ # 2)/(2n) &, If[OddQ[n], 2^((n - 1)/2), 2^(n/2 - 1) + 2^(n/2 - 2)], Divisors[n]]
mx=40; CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-2*x^n]/n, {n, mx}]+(1+x)^2/(1-2*x^2))/2, {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
a[0] = 1; a[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#)&]/(2*n); Array[a, 36, 0] (* Jean-François Alcover, Nov 05 2017 *)
|
|
PROG
|
(PARI) a(n)=if(n<1, !n, (n%2+3)/4*2^(n\2)+sumdiv(n, d, eulerphi(n/d)*2^d)/2/n)
(Python)
from sympy import divisors, totient
def a(n):
return 1 if n<1 else ((2**(n//2+1) if n%2 else 3*2**(n//2-1)) + sum(totient(n//d)*2**d for d in divisors(n))//n)//2
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice,core
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|