login
A052307
Triangle read by rows: T(n,k) = number of bracelets (reversible necklaces) with n beads, k of which are black and n - k are white.
27
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 3, 4, 4, 3, 1, 1, 1, 1, 4, 5, 8, 5, 4, 1, 1, 1, 1, 4, 7, 10, 10, 7, 4, 1, 1, 1, 1, 5, 8, 16, 16, 16, 8, 5, 1, 1, 1, 1, 5, 10, 20, 26, 26, 20, 10, 5, 1, 1, 1, 1, 6, 12, 29, 38, 50, 38, 29, 12, 6, 1, 1, 1, 1, 6, 14, 35, 57, 76, 76, 57, 35, 14, 6, 1, 1
OFFSET
0,13
COMMENTS
Equivalently, T(n,k) is the number of orbits of k-element subsets of the vertices of a regular n-gon under the usual action of the dihedral group D_n, or under the action of Euclidean plane isometries. Note that each row of the table is symmetric and unimodal. - Austin Shapiro, Apr 20 2009
Also, the number of k-chords in n-tone equal temperament, up to (musical) transposition and inversion. Example: there are 29 tetrachords, 38 pentachords, 50 hexachords in the familiar 12-tone equal temperament. Called "Forte set-classes," after Allen Forte who first cataloged them. - Jon Wild, May 21 2004
REFERENCES
Martin Gardner, "New Mathematical Diversions from Scientific American" (Simon and Schuster, New York, 1966), pages 245-246.
N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.
LINKS
Washington Bomfim, Rows n = 0..130, flattened
N. J. Fine, Classes of periodic sequences, Illinois J. Math., 2 (1958), 285-302.
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
G. Gori, S. Paganelli, A. Sharma, P. Sodano, and A. Trombettoni, Bell-Paired States Inducing Volume Law for Entanglement Entropy in Fermionic Lattices, arXiv:1405.3616 [cond-mat.stat-mech], 2014. See Section V.
H. Gupta, Enumeration of incongruent cyclic k-gons, Indian J. Pure and Appl. Math., 10(8) (1979), 964-999.
S. Karim, J. Sawada, Z. Alamgirz, and S. M. Husnine, Generating bracelets with fixed content, Theoretical Computer Science, 475 (2013), 103-112.
John P. McSorley and Alan H. Schoen, Rhombic tilings of (n, k)-ovals, (n, k, lambda)-cyclic difference sets, and related topics, Discrete Math., 313 (2013), 129-154. - From N. J. A. Sloane, Nov 26 2012
A. L. Patterson, Ambiguities in the X-Ray Analysis of Crystal Structures, Phys. Rev. 65 (1944), 195 - 201 (see Table I). [From N. J. A. Sloane, Mar 14 2009]
Richard H. Reis, A formula for C(T) in Gupta's paper, Indian J. Pure and Appl. Math., 10(8) (1979), 1000-1001.
Vladimir Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math., 35(5) (2004), 629-638.
Vladimir Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math., 35(5) (2004), 629-638.
FORMULA
T(0,0) = 1. If n > 0, T(n,k) = binomial(floor(n/2) - (k mod 2) * (1 - (n mod 2)), floor(k/2)) / 2 + Sum_{d|n, d|k} (phi(d)*binomial(n/d, k/d)) / (2*n). - Washington Bomfim, Jun 30 2012 [edited by Petros Hadjicostas, May 29 2019]
From Freddy Barrera, Apr 21 2019: (Start)
T(n,k) = (1/2) * (A119963(n,k) + A047996(n,k)).
T(n,k) = T(n, n-k) for each k < n (Theorem 2 of H. Gupta). (End)
G.f. for column k >= 1: (x^k/2) * ((1/k) * Sum_{m|k} phi(m)/(1 - x^m)^(k/m) + (1 + x)/(1 - x^2)^floor((k/2) + 1)). (This formula is due to Herbert Kociemba.) - Petros Hadjicostas, May 25 2019
Bivariate o.g.f.: Sum_{n,k >= 0} T(n, k)*x^n*y^k = (1/2) * ((x + 1) * (x*y + 1) / (1 - x^2 * (y^2 + 1)) + 1 - Sum_{d >= 1} (phi(d)/d) * log(1 - x^d * (1 + y^d))). - Petros Hadjicostas, Jun 13 2019
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 1, 2, 1, 1;
1, 1, 2, 2, 1, 1;
1, 1, 3, 3, 3, 1, 1;
1, 1, 3, 4, 4, 3, 1, 1;
1, 1, 4, 5, 8, 5, 4, 1, 1;
1, 1, 4, 7, 10, 10, 7, 4, 1, 1;
1, 1, 5, 8, 16, 16, 16, 8, 5, 1, 1;
1, 1, 5, 10, 20, 26, 26, 20, 10, 5, 1, 1;
1, 1, 6, 12, 29, 38, 50, 38, 29, 12, 6, 1, 1;
...
MAPLE
A052307 := proc(n, k)
local hk, a, d;
if k = 0 then
return 1 ;
end if;
hk := k mod 2 ;
a := 0 ;
for d in numtheory[divisors](igcd(k, n)) do
a := a+ numtheory[phi](d)*binomial(n/d-1, k/d-1) ;
end do:
%/k + binomial(floor((n-hk)/2), floor(k/2)) ;
%/2 ;
end proc: # R. J. Mathar, Sep 04 2011
MATHEMATICA
Table[If[m*n===0, 1, 1/2*If[EvenQ[n], If[EvenQ[m], Binomial[n/2, m/2], Binomial[(n-2)/2, (m-1)/2 ]], If[EvenQ[m], Binomial[(n-1)/2, m/2], Binomial[(n-1)/2, (m-1)/2]]] + 1/2*Fold[ #1 +(EulerPhi[ #2]*Binomial[n/#2, m/#2])/n &, 0, Intersection[Divisors[n], Divisors[m]]]], {n, 0, 12}, {m, 0, n}] (* Wouter Meeussen, Aug 05 2002, Jan 19 2009 *)
PROG
(PARI)
B(n, k)={ if(n==0, return(1)); GCD = gcd(n, k); S = 0;
for(d = 1, GCD, if((k%d==0)&&(n%d==0), S+=eulerphi(d)*binomial(n/d, k/d)));
return (binomial(floor(n/2)- k%2*(1-n%2), floor(k/2))/2 + S/(2*n)); }
n=0; k=0; for(L=0, 8645, print(L, " ", B(n, k)); k++; if(k>n, k=0; n++))
/* Washington Bomfim, Jun 30 2012 */
(Python)
from sympy import binomial as C, totient, divisors, gcd
def T(n, k): return 1 if n==0 else C((n//2) - k%2 * (1 - n%2), (k//2))/2 + sum(totient(d)*C(n//d, k//d) for d in divisors(gcd(n, k)))/(2*n)
for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 23 2017
KEYWORD
nonn,tabl,nice
AUTHOR
Christian G. Bower, Nov 15 1999
STATUS
approved