login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350889
Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is the number of partitions of n such that k*(smallest part) = (number of parts).
9
1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 2, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 2, 4, 5, 5, 3, 2, 1, 1, 2, 3, 4, 7, 6, 5, 3, 2, 1, 1, 3, 4, 5, 8, 9, 7, 5, 3, 2, 1, 1, 3, 5, 6, 10, 11, 10, 7, 5, 3, 2, 1, 1, 4, 6, 7, 12, 15, 13, 11, 7, 5, 3, 2, 1, 1, 4, 8, 8, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 1
OFFSET
1,13
COMMENTS
Column k is asymptotic to r^2 * (k*log(r)^2 + polylog(2, r^2))^(1/4) * exp(2*sqrt((k*log(r)^2 + polylog(2, r^2))*n)) / (2*sqrt(Pi*k*(k - (k-2)*r^2)) * n^(3/4)), where r is the positive real root of the equation r^2 = 1 - r^k. - Vaclav Kotesovec, Oct 14 2024
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50).
FORMULA
G.f. of column k: Sum_{i>=1} x^(k*i^2)/Product_{j=1..k*i-1} (1-x^j).
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
1, 1, 1, 1;
1, 1, 2, 1, 1;
1, 1, 2, 2, 1, 1;
1, 1, 3, 3, 2, 1, 1;
1, 2, 3, 4, 3, 2, 1, 1;
2, 2, 4, 5, 5, 3, 2, 1, 1;
2, 3, 4, 7, 6, 5, 3, 2, 1, 1;
3, 4, 5, 8, 9, 7, 5, 3, 2, 1, 1;
PROG
(PARI) T(n, k) = polcoef(sum(i=1, sqrtint(n\k), x^(k*i^2)/prod(j=1, k*i-1, 1-x^j+x*O(x^n))), n);
(Ruby)
def partition(n, min, max)
return [[]] if n == 0
[max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
end
def A(n)
a = Array.new(n, 0)
partition(n, 1, n).each{|ary|
(1..n).each{|i|
a[i - 1] += 1 if i * ary[-1] == ary.size
}
}
a
end
def A350889(n)
(1..n).map{|i| A(i)}.flatten
end
p A350889(14)
CROSSREFS
Row sums give A168657.
Sequence in context: A140356 A119963 A057790 * A224697 A052307 A067059
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jan 21 2022
STATUS
approved