login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377076
G.f.: Sum_{k>=0} x^(6*k^2) / Product_{j=1..6*k-1} (1 - x^j).
2
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 84, 101, 119, 142, 165, 194, 224, 260, 298, 344, 392, 449, 510, 582, 659, 750, 847, 962, 1087, 1233, 1393, 1581, 1787, 2029, 2297, 2610, 2958, 3365, 3819, 4348, 4942, 5630, 6404, 7302, 8310, 9475, 10787
OFFSET
0,9
LINKS
FORMULA
a(n) ~ r^2 * (6*log(r)^2 + polylog(2, r^2))^(1/4) * exp(2*sqrt((6*log(r)^2 + polylog(2, r^2))*n)) / (2*sqrt(12*Pi*(3 - 2*r^2)) * n^(3/4)), where r = sqrt(((9 + sqrt(93))/2)^(1/3)/3^(2/3) - (2/(3*(9 + sqrt(93))))^(1/3)) = 0.82603135765418... is the positive real root of the equation r^2 = 1 - r^6.
MATHEMATICA
nmax = 100; CoefficientList[Series[Sum[x^(6*k^2)/Product[1-x^j, {j, 1, 6*k-1}], {k, 1, Sqrt[nmax/6]}], {x, 0, nmax}], x]
CROSSREFS
Column 6 of A350889.
Sequence in context: A026811 A001401 A373078 * A347549 A008628 A363067
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 15 2024
STATUS
approved