login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A363067
Number of partitions p of n such that (1/4)*max(p) is a part of p.
4
1, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 31, 39, 51, 64, 81, 102, 128, 159, 198, 245, 304, 374, 460, 563, 689, 841, 1023, 1242, 1505, 1819, 2195, 2642, 3173, 3804, 4551, 5435, 6477, 7707, 9151, 10850, 12843, 15175, 17902, 21089, 24802, 29132, 34164, 40012, 46796, 54663, 63766
OFFSET
0,8
LINKS
FORMULA
G.f.: Sum_{k>=0} x^(5*k)/Product_{j=1..4*k} (1-x^j).
EXAMPLE
a(8) = 3 counts these partitions: 431, 4211, 41111.
PROG
(PARI) a(n) = sum(k=0, n\5, #partitions(n-5*k, 4*k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 16 2023
STATUS
approved