login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A363068
Number of partitions p of n such that (1/5)*max(p) is a part of p.
4
1, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 14, 20, 26, 35, 44, 59, 73, 94, 117, 148, 181, 228, 277, 344, 418, 514, 621, 762, 917, 1116, 1342, 1624, 1945, 2348, 2803, 3366, 4012, 4798, 5700, 6798, 8052, 9565, 11305, 13383, 15771, 18618, 21880, 25745, 30187, 35414, 41414, 48461, 56531, 65967
OFFSET
0,9
LINKS
FORMULA
G.f.: Sum_{k>=0} x^(6*k)/Product_{j=1..5*k} (1-x^j).
EXAMPLE
a(8) = 2 counts these partitions: 521, 5111.
PROG
(PARI) a(n) = sum(k=0, n\6, #partitions(n-6*k, 5*k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 16 2023
STATUS
approved