login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035961
Number of partitions of n into parts not of the form 15k, 15k+7 or 15k-7. Also number of partitions with at most 6 parts of size 1 and differences between parts at distance 6 are greater than 1.
1
1, 1, 2, 3, 5, 7, 11, 14, 20, 27, 37, 48, 65, 83, 109, 139, 179, 225, 287, 357, 449, 556, 691, 848, 1047, 1276, 1561, 1893, 2299, 2772, 3348, 4015, 4820, 5756, 6874, 8171, 9716, 11501, 13614, 16058, 18932, 22249, 26138, 30613, 35838, 41848, 48831
OFFSET
0,3
COMMENTS
Case k=7,i=7 of Gordon Theorem.
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
LINKS
FORMULA
a(n) ~ exp(2*Pi*sqrt(2*n/15)) * 2^(1/4) * cos(Pi/30) / (15^(3/4) * n^(3/4)). - Vaclav Kotesovec, May 10 2018
MATHEMATICA
With[ {n=30}, Series[ 1/Product[ (1 - Switch[ Mod[ k, 15 ], 0, 0, 7, 0, 8, 0, _, x^k ]), {k, 1, n} ], {x, 0, n} ] ]
nmax = 60; CoefficientList[Series[Product[(1 - x^(15*k))*(1 - x^(15*k+ 7-15))*(1 - x^(15*k- 7))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 10 2018 *)
CROSSREFS
Sequence in context: A363068 A238864 A070289 * A051056 A055803 A023027
KEYWORD
nonn,easy
EXTENSIONS
a(0)=1 prepended by Seiichi Manyama, May 08 2018
STATUS
approved