|
|
A035959
|
|
Number of partitions of n in which no parts are multiples of 5.
|
|
35
|
|
|
1, 1, 2, 3, 5, 6, 10, 13, 19, 25, 34, 44, 60, 76, 100, 127, 164, 205, 262, 325, 409, 505, 628, 769, 950, 1156, 1414, 1713, 2081, 2505, 3026, 3625, 4352, 5192, 6200, 7364, 8756, 10357, 12258, 14450, 17034, 20006, 23500, 27510, 32200, 37582, 43846, 51022
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Also number of partitions with at most 4 parts of size 1 and differences between parts at distance 6 are greater than 1.
Also number of partitions of n where no part appears more than four times.
Case k=7, i=5 of Gordon Theorem.
|
|
REFERENCES
|
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: Product_{j>=1} (1 + x^j + x^2j + x^3j + x^4j). - Jon Perry, Mar 30 2004
G.f.: Product_{n>0, n==1, 2, 3, 4 mod 5} 1/(1-q^n).
Given g.f. A(x) then B(x) = x * A(x^3)^2 satisfies 0 = f(B(x), B(x^2)) where f(u, v) = u^3 + v^3 - u*v - 5*u^2*v^2. - Michael Somos, May 28 2006
Given g.f. A(x) then B(x) = x * A(x^3)^2 satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v + 5*v^2*(u + w) - (u^2 + u*w + w^2). - Michael Somos, May 28 2006
Euler transform of period 5 sequence [ 1, 1, 1, 1, 0, ...]. - Michael Somos, May 28 2006
G.f.: Product_{k > 0} P5(x^k) where P5 is 5th cyclotomic polynomial.
a(n) ~ 2*Pi * BesselI(1, 2*sqrt((6*n + 1)/5) * Pi/3) / (5*sqrt(6*n + 1)) ~ exp(2*Pi*sqrt(2*n/15)) / (3^(1/4) * 10^(3/4) * n^(3/4)) * (1 + (Pi/(3*sqrt(15)) - 3*sqrt(15)/(16*Pi)) / sqrt(2*n) + (Pi^2/540 - 225/(1024*Pi^2) - 5/32) / n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 14 2017
G.f.: exp(Sum_{k>=1} x^k*(1 + x^k + x^(2*k) + x^(3*k))/(k*(1 - x^(5*k)))). - Ilya Gutkovskiy, Aug 15 2018
|
|
EXAMPLE
|
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 6*x^5 + 10*x^6 + 13*x^7 + 19*x^8 + ...
G.f. = q + q^7 + 2*q^13 + 3*q^19 + 5*q^25 + 6*q^31 + 10*q^37 + 13*q^43 + ...
a(6) counts these partitions: 6, 42, 411, 33, 321, 3111, 2211, 21111, 111111. - Clark Kimberling, Mar 09 2014
|
|
MATHEMATICA
|
max = 47; f[x_] := (x^5-1)/(x-1); g[x_] := Product[f[x^k], {k, 1, max}]; CoefficientList[ Series[g[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 29 2011, after Michael Somos *)
t = Flatten[Table[5 n + r, {n, 0, 60}, {r, 1, 4}]]; p[n_] := IntegerPartitions[n, All, t]; Table[p[n], {n, 0, 8}] (* shows partitions *)
nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 5], 0, 2] ], {n, 0, 47}] (* Robert Price, Jul 28 2020 *)
Table[Count[IntegerPartitions[n], _?(NoneTrue[Mod[#, 5]==0&])], {n, 0, 50}] (* Harvey P. Dale, Dec 25 2021 *)
|
|
PROG
|
(PARI) {a(n) = if( n<0, 0, polcoeff( eta(x^5 + x * O(x^n)) / eta(x + x * O(x^n)), n))}; /* Michael Somos, May 28 2006 */
(Haskell)
a035959 = p a047201_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
|
|
CROSSREFS
|
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|