login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133563 Expansion of chi(-q) / chi(-q^5) in powers of q where chi() is a Ramanujan theta function. 0
1, -1, 0, -1, 1, 0, 0, -1, 1, -1, 2, -2, 2, -2, 2, -1, 2, -3, 2, -3, 5, -5, 4, -5, 6, -4, 4, -7, 7, -7, 10, -11, 10, -12, 12, -10, 12, -15, 14, -16, 22, -22, 20, -24, 26, -22, 24, -30, 31, -33, 40, -43, 42, -46, 48, -45, 50, -58, 58, -63, 77, -79, 76, -86, 92, -86, 92, -107, 110, -116, 134, -141, 142, -154, 160, -157 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,11

COMMENTS

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A10054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

LINKS

Table of n, a(n) for n=0..75.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q^(-1/6) * eta(q) * eta(q^10) / ( eta(q^2) * eta(q^5) ) in powers of q.

Euler transform of period 10 sequence [ -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, ...].

G.f. is a period 1 Fourier series of a level 360 modular function which satisfies f(-1 / (360 t)) = f(t) where q = exp(2 pi i t).

Given g.f. A(x) then B(x) = x * A(x^6) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v * (u^2 - v) + w^2 * (u^2 + v).

Given g.f. A(x) then B(x) = x * A(x^6) satisfies 0 = f(B(x), B(x^3), B(x^9)) where f(u, v, w) = (u^3 + w^3) * (v + v^3) + 2 * v^4 - v^2 + u^3 * w^3 * ( 2 - v^2 ).

Given g.f. A(x) then B(x) = x * A(x^6) satisfies 0 = f(B(x), B(x^2), B(x^5), B(x^10)) where f(u1, u2, u5, u10) = u1^2 * u5^2 + u1^2 * u10^4 + u1 * u2^2 * u5 * u10^2 + u2 * u5^2 * u10^3 + u2^3 * u10^3 - u2^2 * u10^2 - u1^3 * u5^3 - u1^4 * u10^2 - u1^3 * u2^2 * u5 - u1^2 * u2 * u5^2 * u10.

G.f. is product k>0 P10(x^k) where P10 is 10th cyclotomic polynomial.

G.f.: Product_{k>0} (1 + x^(5*k)) / (1 + x^k).

EXAMPLE

q - q^7 - q^19 + q^25 - q^43 + q^49 - q^55 + 2*q^61 - 2*q^67 + 2*q^73 - ...

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x*O(x^n); polcoeff( eta(x + A) * eta(x^10 + A) / eta(x^2 + A) / eta(x^5 + A), n))}

CROSSREFS

Sequence in context: A087010 A098220 A235508 * A104518 A114295 A004216

Adjacent sequences:  A133560 A133561 A133562 * A133564 A133565 A133566

KEYWORD

sign

AUTHOR

Michael Somos, Sep 16 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 20 13:52 EDT 2014. Contains 240806 sequences.