The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133563 Expansion of chi(-q) / chi(-q^5) in powers of q where chi() is a Ramanujan theta function. 11
 1, -1, 0, -1, 1, 0, 0, -1, 1, -1, 2, -2, 2, -2, 2, -1, 2, -3, 2, -3, 5, -5, 4, -5, 6, -4, 4, -7, 7, -7, 10, -11, 10, -12, 12, -10, 12, -15, 14, -16, 22, -22, 20, -24, 26, -22, 24, -30, 31, -33, 40, -43, 42, -46, 48, -45, 50, -58, 58, -63, 77, -79, 76, -86, 92, -86, 92, -107, 110, -116, 134, -141, 142, -154, 160, -157 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd. - Vaclav Kotesovec, Aug 31 2015 Denoted by t in Andrews and Berndt 2005. - Michael Somos, Apr 25 2016 REFERENCES G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See p. 337. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 14. Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(-1/6) * eta(q) * eta(q^10) / ( eta(q^2) * eta(q^5) ) in powers of q. Euler transform of period 10 sequence [ -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, ...]. G.f. is a period 1 Fourier series which satisfies f(-1 / (360 t)) = f(t) where q = exp(2 Pi i t). Given g.f. A(x) then B(q) = q * A(q^6) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v * (u^2 - v) + w^2 * (u^2 + v). Given g.f. A(x) then B(q) = q * A(q^6) satisfies 0 = f(B(q), B(x^q), B(q^9)) where f(u, v, w) = (u^3 + w^3) * (v + v^3) + 2 * v^4 - v^2 + u^3 * w^3 * ( 2 - v^2 ). Given g.f. A(x) then B(q) = q * A(q^6) satisfies 0 = f(B(q), B(q^2), B(q^5), B(q^10)) where f(u1, u2, u5, u10) = u1^2 * u5^2 + u1^2 * u10^4 + u1 * u2^2 * u5 * u10^2 + u2 * u5^2 * u10^3 + u2^3 * u10^3 - u2^2 * u10^2 - u1^3 * u5^3 - u1^4 * u10^2 - u1^3 * u2^2 * u5 - u1^2 * u2 * u5^2 * u10. G.f.: Product_{k>0} P10(x^k) where P10 is the 10th cyclotomic polynomial. G.f.: Product_{k>0} (1 + x^(5*k)) / (1 + x^k). a(n) ~ (-1)^n * exp(Pi*sqrt(2*n/15)) / (2^(5/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 31 2015 EXAMPLE G.f. = 1 - x - x^3 + x^4 - x^7 + x^8 - x^9 + 2*x^10 - 2*x^11 - 2*x^13 + ... G.f. = q - q^7 - q^19 + q^25 - q^43 + q^49 - q^55 + 2*q^61 - 2*q^67 + 2*q^73 - ... MATHEMATICA a[ n_] := SeriesCoefficient[  QPochhammer[ x, x^2] / QPochhammer[ x^5, x^10], {x, 0, n}]; (* Michael Somos, Aug 26 2015 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x*O(x^n); polcoeff( eta(x + A) * eta(x^10 + A) / (eta(x^2 + A) * eta(x^5 + A)), n))}; CROSSREFS Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A261736 (m=6), A113297 (m=7), A261735 (m=8), A261733 (m=9), A145707 (m=10). Sequence in context: A235508 A271778 A326702 * A104518 A329030 A027388 Adjacent sequences:  A133560 A133561 A133562 * A133564 A133565 A133566 KEYWORD sign AUTHOR Michael Somos, Sep 16 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 02:33 EDT 2021. Contains 346367 sequences. (Running on oeis4.)