login
A133565
a(1)=1. a(n+1) = sum{k=non-isolated divisors of n} a(k). A non-isolated divisor, k, of n is a positive divisor of n where (k-1) or (k+1) divides n.
3
1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 4, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 3, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1
OFFSET
1,7
COMMENTS
a(2n) = 0 since 2n-1 has no non-isolated divisors. - Ray Chandler
EXAMPLE
The positive divisors of 20 are 1,2,4,5,10,20. Of these, 1 and 2 are adjacent and 4 and 5 are adjacent. So the non-isolated divisors of 20 are 1,2, 4,5. Therefore a(21) = a(1) + a(2) + a(4) + a(5) = 1 + 0 + 0 + 1 = 2.
PROG
(PARI) A133565(n) = if(1==n, n, sumdiv(n-1, d, if((!((n-1)%(1+d))) || ((d>1)&&(!((n-1)%(d-1)))), A133565(d), 0))); \\ Antti Karttunen, Dec 19 2018
CROSSREFS
Sequence in context: A230403 A349907 A248908 * A239704 A168570 A340928
KEYWORD
nonn
AUTHOR
Leroy Quet, Sep 16 2007
EXTENSIONS
Extended by Ray Chandler, Jun 25 2008
STATUS
approved