login
A230403
a(n) = the largest k such that (k+1)! divides n; the number of trailing zeros in the factorial base representation of n (A007623(n)).
14
0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1
OFFSET
1,6
COMMENTS
Many of the comments given in A055881 apply also here.
From Amiram Eldar, Mar 10 2021: (Start)
The asymptotic density of the occurrences of k is (k+1)/(k+2)!.
The asymptotic mean of this sequence is e - 2 = 0.718281... (A001113 - 2). (End)
LINKS
Tyler Ball, Joanne Beckford, Paul Dalenberg, Tom Edgar, and Tina Rajabi, Some Combinatorics of Factorial Base Representations, J. Int. Seq., Vol. 23 (2020), Article 20.3.3.
FORMULA
a(n) = A055881(n)-1.
EXAMPLE
In factorial number base representation (A007623), the numbers from 1 to 9 are represented as:
n A007623(n) a(n) (gives the number of trailing zeros)
1 1 0
2 10 1
3 11 0
4 20 1
5 21 0
6 100 2
7 101 0
8 110 1
9 111 0
MATHEMATICA
With[{b = MixedRadix[Range[12, 2, -1]]}, Array[LengthWhile[Reverse@ IntegerDigits[#, b], # == 0 &] &, 105]] (* Michael De Vlieger, Jun 03 2020 *)
PROG
(Scheme)
(define (A230403 n) (if (zero? n) 0 (let loop ((n n) (i 2)) (cond ((not (zero? (modulo n i))) (- i 2)) (else (loop (/ n i) (1+ i)))))))
CROSSREFS
Cf. A001113, A055881. Bisection: A230404.
A few sequences related to factorial base representation (A007623): A034968, A084558, A099563, A060130, A227130, A227132, A227148, A227149, A153880.
Analogous sequence for binary system: A007814.
Sequence in context: A117188 A341514 A276084 * A349907 A248908 A133565
KEYWORD
nonn,base,easy
AUTHOR
Antti Karttunen, Oct 31 2013
STATUS
approved