login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113297
Expansion of chi(-q) / chi(-q^7) in powers of q where chi() is a Ramanujan theta function.
10
1, -1, 0, -1, 1, -1, 1, 0, 1, -2, 1, -1, 2, -2, 3, -3, 3, -4, 4, -4, 5, -4, 4, -6, 6, -7, 7, -8, 11, -11, 10, -12, 14, -15, 15, -14, 17, -20, 19, -21, 24, -26, 30, -31, 32, -37, 38, -40, 45, -44, 47, -54, 56, -60, 64, -68, 79, -83, 83, -92, 100, -105, 110, -112, 123, -136, 138, -147, 160, -170, 185, -194, 203
OFFSET
0,10
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).
In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd. - Vaclav Kotesovec, Aug 31 2015
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
F. G. Garvan and H. Yesilyurt, Shifted and shiftless partition identities II, arXiv:math/0605317 [math.NT], 2003.
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 14.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/4) * eta(q) * eta(q^14) / ( eta(q^2) * eta(q^7) ) in powers of q.
Euler transform of period 14 sequence [ -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 0, ...].
G.f. A(x) = G(x^7) * H(x^2) - x * G(x^2) * H(x^7) where G(x) and H(x) are the Rogers-Ramanujan functions.
G.f.: Product_{k>0} (1 + x^(7*k)) / (1 + x^k).
Expansion of chi(-q) / chi(-q^7) in powers of q where chi() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (224 t)) = f(t) where q = exp(2 Pi i t).
G.f.: Product_{k>0} P14(x^k) where P14 is the 14th cyclotomic polynomial.
Convolution inverse is A097793.
a(n) ~ (-1)^n * exp(Pi*sqrt(n/7)) / (2^(3/2) * 7^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 31 2015
EXAMPLE
G.f. = 1 - x - x^3 + x^4 - x^5 + x^6 + x^8 - 2*x^9 + x^10 - x^11 + ...
G.f. = q - q^5 - q^13 + q^17 - q^21 + q^25 + q^33 - 2*q^37 + q^41 + ...
MAPLE
seq(coeff(series(mul((1+x^(7*k))/(1+x^k), k=1..n), x, n+1), x, n), n=0..80); # Muniru A Asiru, Jul 29 2018
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^14] / (QPochhammer[ x^2] QPochhammer[ x^7]), {x, 0, n}]; (* Michael Somos, Aug 26 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^14 + A) / (eta(x^2 + A) * eta(x^7 + A)), n))};
CROSSREFS
Cf. A097793.
Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A261736 (m=6), A261735 (m=8), A261733 (m=9), A145707 (m=10).
Sequence in context: A317805 A231561 A371632 * A119985 A306945 A234716
KEYWORD
sign
AUTHOR
Michael Somos, Oct 23 2005
STATUS
approved