login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341154
Number of partitions of 2*n into exactly n prime powers (including 1).
1
1, 1, 2, 3, 5, 6, 10, 13, 19, 24, 34, 42, 58, 71, 94, 116, 151, 182, 234, 282, 354, 424, 528, 627, 773, 914, 1113, 1311, 1585, 1854, 2227, 2599, 3095, 3597, 4262, 4931, 5811, 6704, 7855, 9035, 10542, 12080, 14036, 16047, 18561, 21161, 24397, 27736, 31866
OFFSET
0,3
FORMULA
G.f.: Product_{p prime, k>=1} 1 / (1 - x^(p^k-1)).
MATHEMATICA
nmax = 48; CoefficientList[Series[Product[1/(1 - Boole[PrimePowerQ[k + 1]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d Boole[PrimePowerQ[d + 1]], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 48}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 06 2021
STATUS
approved