login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280954
Number of integer partitions of n using predecessors of prime numbers.
10
1, 1, 2, 2, 4, 4, 7, 7, 11, 11, 17, 17, 26, 26, 37, 37, 53, 53, 74, 74, 101, 101, 137, 137, 183, 183, 240, 240, 314, 314, 406, 406, 520, 520, 662, 662, 837, 837, 1049, 1049, 1311, 1311, 1627, 1627, 2008, 2008, 2469, 2469, 3021, 3021, 3678, 3678, 4466, 4466
OFFSET
0,3
COMMENTS
The predecessors of prime numbers are {1, 2, 4, 6, 10, 12, ...} = A006093.
LINKS
EXAMPLE
The partitions for n=0..7 are:
(),
(1),
(2), (11),
(21),(111),
(4), (22), (211), (1111),
(41),(221),(2111),(11111),
(6), (42), (411), (222), (2211), (21111), (111111),
(61),(421),(4111),(2221),(22111),(211111),(1111111).
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=2, 1,
b(n, prevprime(i))+`if`(i-1>n, 0, b(n-i+1, i)))
end:
a:= n-> b(n, nextprime(n)):
seq(a(n), n=0..60); # Alois P. Heinz, Jan 11 2017
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(`if`(
isprime(d+1), d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..60); # Alois P. Heinz, Jun 07 2018
MATHEMATICA
nn=60; invser=Series[Product[1-x^(Prime[n]-1), {n, PrimePi[nn+1]}], {x, 0, nn}];
CoefficientList[1/invser, x]
CROSSREFS
Even (and odd) bipartition gives A280962.
Sequence in context: A341972 A277133 A323539 * A339244 A197122 A064410
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 11 2017
STATUS
approved