login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280962
Number of integer partitions of the n-th even number or the n-th odd number using predecessors of prime numbers.
2
1, 2, 4, 7, 11, 17, 26, 37, 53, 74, 101, 137, 183, 240, 314, 406, 520, 662, 837, 1049, 1311, 1627, 2008, 2469, 3021, 3678, 4466, 5397, 6499, 7804, 9338, 11137, 13251, 15715, 18589, 21938, 25823, 30322, 35535, 41544, 48471, 56448, 65602, 76097, 88128, 101867
OFFSET
0,2
COMMENTS
a(n) is both the number of integer partitions of even numbers {0, 2, 4, 6, ...} = A005843 using primes minus one {1, 2, 4, 6, ...} = A006093 and the number of integer partitions of odd numbers {1, 3, 5, 7, ...} = A005408 using primes minus one.
LINKS
FORMULA
G.f. G(x) satisfies: (1+x)*G(x^2) = Product_{p prime} 1/(1-x^(p-1)).
a(n) = A280954(A005408(n)) = A280954(A005843(n)).
EXAMPLE
The a(4)=11 partitions of 9 are:
(621), (6111),
(441), (4221), (42111), (411111),
(22221), (222111), (2211111), (21111111),
(111111111).
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=2, 1,
b(n, prevprime(i))+`if`(i-1>n, 0, b(n-i+1, i)))
end:
a:= n-> b(2*n, nextprime(2*n)):
seq(a(n), n=0..60); # Alois P. Heinz, Jan 12 2017
MATHEMATICA
nn=60; invser=Product[1-x^(Prime[n]-1), {n, PrimePi[2nn-1]}];
Table[SeriesCoefficient[1/invser, {x, 0, n}], {n, 1, 2nn-1, 2}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 11 2017
STATUS
approved