login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117276
Number of 1's in all partitions of n with no even parts repeated.
2
0, 1, 2, 4, 7, 11, 17, 26, 38, 54, 76, 105, 143, 193, 257, 339, 444, 576, 742, 950, 1208, 1528, 1923, 2407, 2999, 3721, 4597, 5657, 6937, 8476, 10322, 12532, 15168, 18306, 22034, 26450, 31672, 37835, 45091, 53619, 63625, 75341, 89037, 105023, 123647
OFFSET
0,3
COMMENTS
a(n)=Sum(k*A117274(n,k),k=0..n).
FORMULA
G.f.: x*product((1+x^(2j))/(1-x^(2j-1)), j=1..infinity)/(1-x).
a(n) ~ exp(sqrt(n/2)*Pi) / (2^(5/4)*Pi*n^(1/4)). - Vaclav Kotesovec, Mar 07 2016
G.f.: (x/(1 - x))*Product_{k>=1} (1 - x^(4*k))/(1 - x^k). - Ilya Gutkovskiy, May 15 2018
EXAMPLE
a(5)=11 because the partitions of 5 with no even parts repeated are [5],[4,1],[3,2],[3,1,1],[2,1,1,1] and [1,1,1,1,1] and they have a total number 0+1+0+2+3+5=11 parts equal to 1.
MAPLE
g:=x*product((1+x^(2*j))/(1-x^(2*j-1)), j=1..35)/(1-x): gser:=series(g, x=0, 50): seq(coeff(gser, x, n), n=0..47);
MATHEMATICA
nmax = 50; CoefficientList[Series[x/(1-x) * Product[(1+x^(2*k))/(1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)
CROSSREFS
Sequence in context: A342492 A280962 A096967 * A035295 A289010 A006999
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 06 2006
STATUS
approved