OFFSET
0,3
COMMENTS
a(n)=Sum(k*A117274(n,k),k=0..n).
FORMULA
G.f.: x*product((1+x^(2j))/(1-x^(2j-1)), j=1..infinity)/(1-x).
a(n) ~ exp(sqrt(n/2)*Pi) / (2^(5/4)*Pi*n^(1/4)). - Vaclav Kotesovec, Mar 07 2016
G.f.: (x/(1 - x))*Product_{k>=1} (1 - x^(4*k))/(1 - x^k). - Ilya Gutkovskiy, May 15 2018
EXAMPLE
a(5)=11 because the partitions of 5 with no even parts repeated are [5],[4,1],[3,2],[3,1,1],[2,1,1,1] and [1,1,1,1,1] and they have a total number 0+1+0+2+3+5=11 parts equal to 1.
MAPLE
g:=x*product((1+x^(2*j))/(1-x^(2*j-1)), j=1..35)/(1-x): gser:=series(g, x=0, 50): seq(coeff(gser, x, n), n=0..47);
MATHEMATICA
nmax = 50; CoefficientList[Series[x/(1-x) * Product[(1+x^(2*k))/(1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 06 2006
STATUS
approved