OFFSET
0,6
LINKS
Alois P. Heinz, Columns k = 0..140, flattened
EXAMPLE
T(2,4) = 4 since the possible partitions of 4 are on the first definition (no term more than twice) 1+1+2, 2+2, 1+3, or 4 and on the second definition (no term a multiple of 3) 1+1+1+1, 1+1+2, 2+2, or 4.
Triangle T(n,k) begins:
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 2, 2, 3, 4, 5, 6, 8, ...
2, 2, 4, 5, 7, 9, 13, 16, ...
3, 4, 6, 9, 12, 16, 22, ...
5, 6, 10, 13, 19, 25, ...
7, 10, 14, 20, 27, ...
11, 14, 21, 28, ...
15, 21, 29, ...
22, 29, ...
30, ...
MAPLE
b:= proc(n, i, k) option remember;
`if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k), j=0..min(n/i, k))))
end:
T:= (n, k)-> b(k$2, n):
seq(seq(T(n, k), n=0..k), k=0..12); # Alois P. Heinz, Nov 27 2013
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1, k], {j, 0, Min[n/i, k]}]]]; T[n_, k_] := b[k, k, n]; Table[Table[T[n, k], {n, 0, k}], {k, 0, 12}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, Apr 20 2001
STATUS
approved