OFFSET
1,2
COMMENTS
(tau<=)_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k <= n}|, i.e., (tau<=)_k(n) is number of solutions to x_1*x_2*...*x_k <= n, x_i > 0.
Partial sums of A007426.
Equals row sums of triangle A140703. - Gary W. Adamson, May 24 2008
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Vaclav Kotesovec, Graph - The asymptotic ratio (1000000 terms)
Eric Weisstein's World of Mathematics, Stieltjes Constants
Wikipedia, Stieltjes constants
FORMULA
(tau<=)_k(n) = Sum_{i=1..n} tau_k(i).
a(n) = Sum_{k = 1..n} tau_{3}(k)*floor (n/k), where tau_{3} is A007425. - Enrique Pérez Herrero, Jan 23 2013
a(n) ~ n * (log(n)^3/6 + (2*g - 1/2)*log(n)^2 + (6*g^2 - 4*g - 4*g1 + 1)*log(n) + 4*g^3 - 6*g^2 + 4*g + 4*g1*(1 - 3*g) + 2*g2 - 1), where g is the Euler-Mascheroni constant A001620, g1 and g2 are the Stieltjes constants, see A082633 and A086279. - Vaclav Kotesovec, Sep 09 2018
a(n) = Sum_{i=1..n} tau(i)*A006218(floor(n/i)). - Ridouane Oudra, Sep 17 2021
a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} floor(n/(i*j*k)). - Ridouane Oudra, Oct 31 2022
MATHEMATICA
(* Asymptotics: *) n * (Log[n]^3/6 + (2*EulerGamma - 1/2)*Log[n]^2 + (6*EulerGamma^2 - 4*EulerGamma - 4*StieltjesGamma[1] + 1)*Log[n] + 4*EulerGamma^3 - 6*EulerGamma^2 + 4*EulerGamma + 4*StieltjesGamma[1]*(1 - 3*EulerGamma) + 2*StieltjesGamma[2] - 1) (* Vaclav Kotesovec, Sep 09 2018 *)
CROSSREFS
Cf. tau_2(n): A000005, tau_3(n): A007425, tau_4(n): A007426, tau_5(n): A061200, tau_6(n): A034695, (unordered) 2-factorizations of n: A038548, (unordered) 3-factorizations of n: A034836, A001055, (tau<=)_2(n): A006218, (tau<=)_3(n): A061201, (tau<=)_5(n): A061203, (tau<=)_6(n): A061204.
Equals left column of triangle A140705.
Cf. A140703.
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 21 2001
STATUS
approved