login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086279 Decimal expansion of 2nd Stieltjes constant gamma_2 (negated). 30
0, 0, 9, 6, 9, 0, 3, 6, 3, 1, 9, 2, 8, 7, 2, 3, 1, 8, 4, 8, 4, 5, 3, 0, 3, 8, 6, 0, 3, 5, 2, 1, 2, 5, 2, 9, 3, 5, 9, 0, 6, 5, 8, 0, 6, 1, 0, 1, 3, 4, 0, 7, 4, 9, 8, 8, 0, 7, 0, 1, 3, 6, 5, 4, 5, 1, 8, 5, 0, 7, 5, 5, 3, 8, 2, 2, 8, 0, 4, 1, 4, 1, 7, 1, 9, 7, 8, 1, 9, 7, 3, 8, 1, 3, 7, 4, 5, 3, 7, 3, 1, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 166.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

Eric Weisstein's World of Mathematics, Stieltjes Constants

Wikipedia, Stieltjes constants

FORMULA

Using the abbreviations a = log(z^2 + 1/4)/2, b = arctan(2*z) and c = cosh(Pi*z) then gamma_2 = -(Pi/3)*Integral_{0..infinity}(a^3-3*a*b^2)/c^2. The general case is for n >= 0 (which includes Euler's gamma as gamma_0) gamma_n = (-Pi/(n+1))* Integral_{0..infinity} sigma(n+1)/c^2, where sigma(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n,2*k)*b^(2*k)*a^(n-2*k). - Peter Luschny, Apr 19 2018

EXAMPLE

-0.0096903...

MAPLE

evalf(gamma(2)); # R. J. Mathar, Feb 02 2011

MATHEMATICA

Join[{0, 0}, RealDigits[N[-StieltjesGamma[2], 101]][[1]]] (* Jean-Fran├žois Alcover, Oct 23 2012 *)

N[4*EulerGamma^3 + Residue[Zeta[s]^4 / 2 - 2*EulerGamma*Zeta[s]^3, {s, 1}], 100] (* Vaclav Kotesovec, Jan 07 2017 *)

CROSSREFS

Cf. A001620, A082633, A086280, A086281, A086282, A183141, A183167, A183206, A184853, A184854.

Sequence in context: A161484 A103985 A153071 * A155533 A083281 A019711

Adjacent sequences:  A086276 A086277 A086278 * A086280 A086281 A086282

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Jul 14 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 16 04:04 EST 2018. Contains 318158 sequences. (Running on oeis4.)