login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153071
Decimal expansion of L(3, chi4), where L(s, chi4) is the Dirichlet L-function for the non-principal character modulo 4.
25
9, 6, 8, 9, 4, 6, 1, 4, 6, 2, 5, 9, 3, 6, 9, 3, 8, 0, 4, 8, 3, 6, 3, 4, 8, 4, 5, 8, 4, 6, 9, 1, 8, 6, 0, 0, 0, 6, 9, 5, 4, 0, 2, 6, 7, 6, 8, 3, 9, 0, 9, 6, 1, 5, 4, 4, 2, 0, 1, 6, 8, 1, 5, 7, 4, 3, 9, 4, 9, 8, 4, 1, 1, 7, 0, 8, 0, 3, 3, 1, 3, 6, 7, 3, 9, 5, 9, 4, 0, 7
OFFSET
0,1
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks, Part II, Springer-Verlag, 1989. See page 293, Entry 25 (iii).
Leonhard Euler, Introductio in Analysin Infinitorum, First Part, Articles 175, 284 and 287.
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20.
LINKS
J. T. Groenman, Problem 1511, Crux Mathematicorum, Vol. 16, No. 2 (1990), p. 43; Solution to Problem 1511, by Beatriz Margolis, ibid., Vol. 17, No. 3 (1991), pp. 92-93.
Qing-Hu Hou and Zhi-Wei Sun, A q-analogue of the identity Sum_{k>=0}(-1)^k/(2k+1)^3 = Pi^3/32, arXiv:1808.04717 [math.CO], 2018.
Masato Kobayashi, Integral representations for zeta(3) with the inverse sine function, arXiv:2108.01247 [math.NT], 2021.
Richard J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, section 2.2 entry L(m=4,r=2,s=3).
Michael Penn, An infinite tangent product, YouTube video, 2020.
Eric Weisstein's World of Mathematics, Dirichlet Beta Function.
FORMULA
chi4(k) = Kronecker(-4, k); chi4(k) is 0, 1, 0, -1 when k reduced modulo 4 is 0, 1, 2, 3, respectively; chi4 is A101455.
Series: L(3, chi4) = Sum_{k>=1} chi4(k) k^{-3} = 1 - 1/3^3 + 1/5^3 - 1/7^3 + 1/9^3 - 1/11^3 + 1/13^3 - 1/15^3 + ...
Series: L(3, chi4) = Sum_{k>=0} tanh((2k+1) Pi/2)/(2k+1)^3. [Ramanujan; see Berndt, page 293]
Closed form: L(3, chi4) = Pi^3/32 = 1/A331095.
Equals Sum_{n>=0} (-1)^n/(2*n+1)^3. - Jean-François Alcover, Mar 29 2013
Equals Product_{k>=3} (1 - tan(Pi/2^k)^4) (Groenman, 1990). - Amiram Eldar, Apr 03 2022
Equals Integral_{x=0..1} arcsinh(x)*arccos(x)/x dx (Kobayashi, 2021). - Amiram Eldar, Jun 23 2023
From Amiram Eldar, Nov 06 2023: (Start)
Equals beta(3), where beta is the Dirichlet beta function.
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^3)^(-1). (End)
EXAMPLE
L(3, chi4) = Pi^3/32 = 0.9689461462593693804836348458469186...
MATHEMATICA
nmax = 1000; First[ RealDigits[Pi^3/32, 10, nmax] ]
PROG
(PARI) Pi^3/32 \\ Michel Marcus, Aug 15 2018
CROSSREFS
Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Sequence in context: A138500 A161484 A103985 * A336085 A363539 A086279
KEYWORD
nonn,cons,easy
AUTHOR
Stuart Clary, Dec 17 2008
EXTENSIONS
Offset corrected by R. J. Mathar, Feb 05 2009
STATUS
approved