login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251809
Decimal expansion of 3*sqrt(2)*Pi^3/128.
10
1, 0, 2, 7, 7, 2, 2, 5, 8, 5, 9, 3, 6, 8, 5, 8, 5, 6, 7, 8, 7, 9, 2, 5, 6, 6, 1, 8, 0, 0, 2, 2, 5, 5, 7, 6, 7, 2, 1, 0, 1, 0, 0, 3, 1, 8, 5, 3, 6, 9, 9, 7, 4, 6, 5, 3, 3, 1, 0, 8, 4, 7, 5, 5, 1, 8, 5, 2, 5, 7, 7, 7, 2, 4, 6, 8, 5, 8, 4, 9, 6, 8, 0, 3, 5, 1
OFFSET
1,3
COMMENTS
Equals the value of the Dirichlet L-series of the non-principal character modulo 8 (A188510) at s=3. - Jianing Song, Nov 16 2019
REFERENCES
L. B. W. Jolley, Summation of series, Dover Publications Inc. (New York), 1961, p. 64 (formula 340).
FORMULA
Equals Sum_{i >= 0} (-1)^floor(i/2)/(2i+1)^3 = +1 +1/3^3 -1/5^3 -1/7^3 +1/9^3 +1/11^3 - ...
Equals Sum_{i >= 1} A188510(i)/i^3 = Sum_{i >= 1} Kronecker(-8,i)/i^3. - Jianing Song, Nov 16 2019
Equals 1/(Product_{p prime == 1 or 3 (mod 8)} (1 - 1/p^3) * Product_{p prime == 5 or 7 (mod 8)} (1 + 1/p^3)). - Amiram Eldar, Dec 17 2023
EXAMPLE
1.027722585936858567879256618002255767210100318536997465331084755185...
MATHEMATICA
RealDigits[3 Sqrt[2] Pi^3/128, 10, 90][[1]]
PROG
(PARI) 3*sqrt(2)*Pi^3/128 \\ G. C. Greubel, Jul 27 2018
(Magma) R:= RealField(); 3*Sqrt(2)*Pi(R)^3/128; // G. C. Greubel, Jul 27 2018
CROSSREFS
Cf. A153071: Sum_{i >= 0} (-1)^i/(2i+1)^3.
Cf. A233091: Sum_{i >= 0} 1/(2i+1)^3.
Sequence in context: A329208 A153738 A159790 * A016639 A138341 A374525
KEYWORD
nonn,cons,changed
AUTHOR
Bruno Berselli, Dec 10 2014
STATUS
approved