login
A161484
Decimal expansion of (187 + 78*sqrt(2))/151.
4
1, 9, 6, 8, 9, 3, 1, 5, 0, 9, 0, 4, 0, 4, 0, 6, 7, 1, 3, 9, 5, 0, 5, 4, 1, 1, 9, 5, 2, 8, 7, 1, 2, 8, 8, 0, 8, 7, 9, 7, 5, 7, 8, 8, 4, 9, 5, 3, 2, 4, 6, 3, 2, 4, 3, 0, 9, 7, 8, 8, 7, 5, 4, 6, 7, 7, 6, 6, 6, 9, 7, 5, 7, 0, 8, 6, 3, 8, 6, 4, 1, 7, 4, 1, 9, 4, 0, 5, 4, 8, 1, 3, 0, 8, 3, 1, 8, 1, 6, 3, 3, 9, 9, 5, 4
OFFSET
1,2
COMMENTS
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {1, 2}, b = A161482.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {0, 2}, b = A161483.
LINKS
FORMULA
Equals (13 + 3*sqrt(2))/(13 - 3*sqrt(2)).
EXAMPLE
(187 + 78*sqrt(2))/151 = 1.96893150904040671395...
MAPLE
with(MmaTranslator[Mma]): Digits:=150:
RealDigits(evalf((187+78*sqrt(2))/151))[1]; # Muniru A Asiru, Apr 08 2018
MATHEMATICA
RealDigits[(187+78Sqrt[2])/151, 10, 120][[1]] (* Harvey P. Dale, Apr 29 2011 *)
PROG
(PARI) (187 + 78*sqrt(2))/151 \\ G. C. Greubel, Apr 07 2018
(Magma) (187 + 78*Sqrt(2))/151; // G. C. Greubel, Apr 07 2018
CROSSREFS
Cf. A161482, A161483, A002193 (decimal expansion of sqrt(2)), A161485 (decimal expansion of (24723+6758*sqrt(2))/151^2).
Sequence in context: A154205 A258407 A138500 * A103985 A153071 A336085
KEYWORD
cons,nonn
AUTHOR
Klaus Brockhaus, Jun 13 2009
STATUS
approved