login
A161486
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+191)^2 = y^2.
4
0, 69, 336, 573, 936, 2449, 3820, 5929, 14740, 22729, 35020, 86373, 132936, 204573, 503880, 775269, 1192800, 2937289, 4519060, 6952609, 17120236, 26339473, 40523236, 99784509, 153518160, 236187189, 581587200, 894769869, 1376600280
OFFSET
1,2
COMMENTS
Corresponding values y of solutions (x, y) are in A161487.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (209+60*sqrt(2))/191 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (52323+26522*sqrt(2))/191^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3)-a(n-6)+382 for n > 6; a(1)=0, a(2)=69, a(3)=336, a(4)=573, a(5)=936, a(6)=2449.
G.f.: x*(69+267*x+237*x^2-51*x^3-89*x^4-51*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 191*A001652(k) for k >= 0.
MATHEMATICA
Transpose[NestList[Flatten[{Rest[#], 6#[[4]]-First[#]+382}]&, {0, 69, 336, 573, 936, 2449}, 40]][[1]] (* Harvey P. Dale, Apr 01 2011 *)
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 69, 336, 573, 936, 2449, 3820}, 40] (* Harvey P. Dale, Mar 29 2016 *)
PROG
(PARI) {forstep(n=0, 10000000, [1, 3], if(issquare(2*n^2+382*n+36481), print1(n, ", ")))}
CROSSREFS
Cf. A161487, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A161488 (decimal expansion of (209+60*sqrt(2))/191), A161489 (decimal expansion of (52323+26522*sqrt(2))/191^2).
Sequence in context: A069216 A158736 A262456 * A236158 A253342 A253335
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Jun 13 2009
STATUS
approved