login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161486
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+191)^2 = y^2.
4
0, 69, 336, 573, 936, 2449, 3820, 5929, 14740, 22729, 35020, 86373, 132936, 204573, 503880, 775269, 1192800, 2937289, 4519060, 6952609, 17120236, 26339473, 40523236, 99784509, 153518160, 236187189, 581587200, 894769869, 1376600280
OFFSET
1,2
COMMENTS
Corresponding values y of solutions (x, y) are in A161487.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (209+60*sqrt(2))/191 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (52323+26522*sqrt(2))/191^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3)-a(n-6)+382 for n > 6; a(1)=0, a(2)=69, a(3)=336, a(4)=573, a(5)=936, a(6)=2449.
G.f.: x*(69+267*x+237*x^2-51*x^3-89*x^4-51*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 191*A001652(k) for k >= 0.
MATHEMATICA
Transpose[NestList[Flatten[{Rest[#], 6#[[4]]-First[#]+382}]&, {0, 69, 336, 573, 936, 2449}, 40]][[1]] (* Harvey P. Dale, Apr 01 2011 *)
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 69, 336, 573, 936, 2449, 3820}, 40] (* Harvey P. Dale, Mar 29 2016 *)
PROG
(PARI) {forstep(n=0, 10000000, [1, 3], if(issquare(2*n^2+382*n+36481), print1(n, ", ")))}
CROSSREFS
Cf. A161487, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A161488 (decimal expansion of (209+60*sqrt(2))/191), A161489 (decimal expansion of (52323+26522*sqrt(2))/191^2).
Sequence in context: A069216 A158736 A262456 * A236158 A253342 A253335
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Jun 13 2009
STATUS
approved