login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161485 Decimal expansion of (24723 + 6758*sqrt(2))/151^2. 4
1, 5, 0, 3, 4, 5, 4, 0, 2, 6, 3, 3, 7, 3, 2, 6, 2, 7, 2, 5, 2, 3, 2, 1, 4, 4, 3, 7, 8, 8, 4, 7, 0, 4, 1, 6, 2, 7, 5, 4, 8, 7, 2, 2, 6, 5, 8, 5, 6, 6, 4, 7, 2, 9, 9, 6, 1, 5, 2, 8, 0, 1, 0, 4, 7, 9, 1, 0, 7, 8, 0, 2, 6, 8, 1, 6, 6, 7, 1, 1, 7, 0, 9, 3, 7, 7, 1, 8, 4, 7, 5, 3, 7, 3, 2, 8, 1, 9, 5, 0, 2, 8, 9, 1, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

lim_{n -> infinity} b(n)/b(n-1) = (24723+6758*sqrt(2))/151^2 for n mod 3 = 0, b = A161482.

lim_{n -> infinity} b(n)/b(n-1) = (24723+6758*sqrt(2))/151^2 for n mod 3 = 1, b = A161483.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

FORMULA

Equals (218 + 31*sqrt(2))/(218 - 31*sqrt(2)).

Equals (3 + 2*sqrt(2))*(13 - 3*sqrt(2))^2/(13 + 3*sqrt(2))^2.

EXAMPLE

(24723 + 6758*sqrt(2))/151^2 = 1.50345402633732627252...

MATHEMATICA

RealDigits[(24723 + 6758*Sqrt[2])/151^2, 10, 100][[1]] (* G. C. Greubel, Apr 07 2018 *)

PROG

(PARI) (24723 + 6758*sqrt(2))/151^2 \\ G. C. Greubel, Apr 07 2018

(MAGMA) (24723 + 6758*Sqrt(2))/151^2; // G. C. Greubel, Apr 07 2018

CROSSREFS

Cf. A161482, A161483, A002193 (decimal expansion of sqrt(2)), A161484 (decimal expansion of (187+78*sqrt(2))/151).

Sequence in context: A201524 A230438 A200399 * A326054 A062526 A264785

Adjacent sequences:  A161482 A161483 A161484 * A161486 A161487 A161488

KEYWORD

cons,nonn

AUTHOR

Klaus Brockhaus, Jun 13 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 16:56 EDT 2021. Contains 343862 sequences. (Running on oeis4.)