The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201524 Decimal expansion of greatest x satisfying 7*x^2 - 1 = sec(x) and 0 < x < Pi. 3
 1, 5, 0, 3, 2, 6, 2, 1, 5, 2, 1, 3, 1, 4, 9, 3, 0, 9, 9, 9, 1, 9, 0, 7, 9, 9, 0, 7, 5, 2, 0, 0, 8, 3, 0, 8, 2, 9, 0, 8, 3, 4, 3, 1, 7, 1, 5, 6, 2, 7, 8, 2, 9, 3, 8, 3, 2, 1, 0, 3, 3, 2, 1, 4, 8, 8, 7, 2, 7, 4, 9, 7, 2, 3, 3, 7, 5, 1, 4, 2, 4, 9, 8, 0, 0, 9, 9, 4, 8, 7, 2, 9, 9, 6, 6, 2, 0, 5, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A201397 for a guide to related sequences. The Mathematica program includes a graph. LINKS EXAMPLE least:  0.557895175779035299832869736313873... greatest: 1.5032621521314930999190799075200... MATHEMATICA a = 7; c = -1; f[x_] := a*x^2 + c; g[x_] := Sec[x] Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] RealDigits[r]   (* A201523 *) r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] RealDigits[r]   (* A201524 *) CROSSREFS Cf. A201397. Sequence in context: A176867 A229175 A326188 * A230438 A200399 A161485 Adjacent sequences:  A201521 A201522 A201523 * A201525 A201526 A201527 KEYWORD nonn,cons AUTHOR Clark Kimberling, Dec 02 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 03:02 EDT 2021. Contains 345395 sequences. (Running on oeis4.)