login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161487
Positive numbers y such that y^2 is of the form x^2+(x+191)^2 with integer x.
3
149, 191, 269, 625, 955, 1465, 3601, 5539, 8521, 20981, 32279, 49661, 122285, 188135, 289445, 712729, 1096531, 1687009, 4154089, 6391051, 9832609, 24211805, 37249775, 57308645, 141116741, 217107599, 334019261, 822488641, 1265395819
OFFSET
1,1
COMMENTS
(-51, a(1)) and (A161486(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+191)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (209+60*sqrt(2))/191 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (52323+26522*sqrt(2))/191^2 for n mod 3 = 1.
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=149, a(2)=191, a(3)=269, a(4)=625, a(5)=955, a(6)=1465.
G.f.: (1-x)*(149+340*x+609*x^2+340*x^3+149*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 191*A001653(k) for k >= 1.
EXAMPLE
(-51, a(1)) = (-51, 149) is a solution: (-51)^2+(-51+191)^2 = 2601+19600 = 22201 = 149^2.
(A161486(1), a(2)) = (0, 191) is a solution: 0^2+(0+191)^2 = 36481 = 191^2.
(A161486(3), a(4)) = (336, 625) is a solution: 336^2+(336+191)^2 = 112896+277729 = 390625 = 625^2.
PROG
(PARI) {forstep(n=-52, 100000000, [1, 3], if(issquare(2*n^2+382*n+36481, &k), print1(k, ", ")))}
CROSSREFS
Cf. A161486, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A161488 (decimal expansion of (209+60*sqrt(2))/191), A161489 (decimal expansion of (52323+26522*sqrt(2))/191^2).
Sequence in context: A307472 A209619 A031929 * A121947 A141946 A128390
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Jun 13 2009
STATUS
approved