login
A161487
Positive numbers y such that y^2 is of the form x^2+(x+191)^2 with integer x.
3
149, 191, 269, 625, 955, 1465, 3601, 5539, 8521, 20981, 32279, 49661, 122285, 188135, 289445, 712729, 1096531, 1687009, 4154089, 6391051, 9832609, 24211805, 37249775, 57308645, 141116741, 217107599, 334019261, 822488641, 1265395819
OFFSET
1,1
COMMENTS
(-51, a(1)) and (A161486(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+191)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (209+60*sqrt(2))/191 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (52323+26522*sqrt(2))/191^2 for n mod 3 = 1.
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=149, a(2)=191, a(3)=269, a(4)=625, a(5)=955, a(6)=1465.
G.f.: (1-x)*(149+340*x+609*x^2+340*x^3+149*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 191*A001653(k) for k >= 1.
EXAMPLE
(-51, a(1)) = (-51, 149) is a solution: (-51)^2+(-51+191)^2 = 2601+19600 = 22201 = 149^2.
(A161486(1), a(2)) = (0, 191) is a solution: 0^2+(0+191)^2 = 36481 = 191^2.
(A161486(3), a(4)) = (336, 625) is a solution: 336^2+(336+191)^2 = 112896+277729 = 390625 = 625^2.
PROG
(PARI) {forstep(n=-52, 100000000, [1, 3], if(issquare(2*n^2+382*n+36481, &k), print1(k, ", ")))}
CROSSREFS
Cf. A161486, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A161488 (decimal expansion of (209+60*sqrt(2))/191), A161489 (decimal expansion of (52323+26522*sqrt(2))/191^2).
Sequence in context: A307472 A209619 A031929 * A121947 A141946 A128390
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Jun 13 2009
STATUS
approved