login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307472
SanD-32 primes: p and p+d are both prime and digit sum A007953(p*(p+d)) = d, with d=32.
4
149, 179, 239, 281, 389, 431, 491, 509, 569, 659, 1019, 1031, 1061, 1259, 1289, 1427, 1439, 1901, 2081, 2111, 2129, 2207, 2237, 2309, 2357, 2441, 2657, 2687, 2801, 3137, 3221, 3359, 3527, 3581, 3659, 3701, 3761, 4127, 4241, 4391, 4517, 4691, 4871, 4877, 4937, 5147, 5381, 5387, 5417, 5591, 5657, 5717, 5807, 6011
OFFSET
1,1
COMMENTS
N. E. Frankel named "S(um)anD(ifference) number" any n such that the sum of digits of n(n+d) equals d, for some d, and SanD primes if in addition, p and p+d are prime.
The only SanD prime with odd d is p = 2, d = 5. All other SanD primes must have d = 14 + 18k, k = 0, 1, 2, 3,...
This is the sequence for k = 1. See A307471 - A307478 for d = 14+18k, k=0..7, A307479 for the union (any d), and A307480 for the smallest SanD-d prime for given d = 14 + 18k, k = -1/2, 0, 1, 2, 3, ...
LINKS
EXAMPLE
a(1) = 149 = A307479(10) = A307480(1) is the smallest SanD-32 prime: 149 and 149 + 32 = 181 both are prime, and the digit sum A007953(149*181) = 2+6+9+6+9 = 32.
MAPLE
sand:= (n, d) -> isprime(n) and isprime(n+d) and convert(convert(n*(n+d), base, 10), `+`)=d:
select(sand, [seq(i, i=5..10000, 6)], 32); # Robert Israel, Apr 10 2019
PROG
(PARI) print_A307472(N, d=32)=forprime(p=2, , isprime(p+d)&&sumdigits(p*(p+d))==d&&!print1(p, ", ")&&!N--&&break)
CROSSREFS
Cf. A307471 - A307478 (d = 14+18k, k=0..7), A307479 (any d), A307480 (smallest prime for given d).
Cf. A000040 (primes), A007953 (sum of digits).
Sequence in context: A100723 A316589 A178127 * A209619 A031929 A161487
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Apr 09 2019
STATUS
approved