login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307473
SanD-50 primes: primes p such that p+d is also prime and sum of digits A007953(p(p+d)) = d, with d = 50.
3
2543, 3137, 3407, 4973, 5147, 5693, 7193, 7523, 7649, 7673, 8243, 8513, 8573, 8627, 9293, 9461, 9497, 9767, 9833, 9857, 9923, 10463, 11279, 11777, 11789, 12107, 12161, 12647, 12917, 12953, 13043, 13127, 13217, 14033, 15137, 15443, 15767, 15773, 16061, 16427, 16553, 16607, 16937, 16943, 17117, 17207, 18047
OFFSET
1,1
COMMENTS
SanD-d primes exist only for d = 14 + 18*k, k = -1/2, 0, 1, 2, 3, ...
This is the sequence for k = 2. See cross-references for other k and related sequences, in particular the main entry A307479 with further references.
LINKS
EXAMPLE
a(1) = 2543 = A307479(42) = A307480(2) is the smallest SanD-50 prime: 2543 and 2543 + 50 = 2593 both are prime, and the digit sum A007953(2543*2593) = 6+5+9+3+9+9+9 = 50.
MAPLE
sand:= (n, d) -> isprime(n) and isprime(n+d) and convert(convert(n*(n+d), base, 10), `+`)=d:
select(sand, [seq(i, i=5..20000, 6)], 50); # Robert Israel, Apr 10 2019
PROG
(PARI) print_A307473(N, d=50)=forprime(p=2, , isprime(p+d)&&sumdigits(p*(p+d))==d&&!print1(p, ", ")&&!N--&&break)
CROSSREFS
Cf. A307471 - A307478 (d = 14+18k, k=0..7), A307479 (any d), A307480 (smallest prime for given d).
Cf. A000040 (primes), A007953 (sum of digits).
Sequence in context: A234407 A135924 A250686 * A327771 A035876 A072435
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Apr 09 2019
STATUS
approved