login
Decimal expansion of (187 + 78*sqrt(2))/151.
4

%I #13 Sep 08 2022 08:45:45

%S 1,9,6,8,9,3,1,5,0,9,0,4,0,4,0,6,7,1,3,9,5,0,5,4,1,1,9,5,2,8,7,1,2,8,

%T 8,0,8,7,9,7,5,7,8,8,4,9,5,3,2,4,6,3,2,4,3,0,9,7,8,8,7,5,4,6,7,7,6,6,

%U 6,9,7,5,7,0,8,6,3,8,6,4,1,7,4,1,9,4,0,5,4,8,1,3,0,8,3,1,8,1,6,3,3,9,9,5,4

%N Decimal expansion of (187 + 78*sqrt(2))/151.

%C Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {1, 2}, b = A161482.

%C Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {0, 2}, b = A161483.

%H G. C. Greubel, <a href="/A161484/b161484.txt">Table of n, a(n) for n = 1..10000</a>

%F Equals (13 + 3*sqrt(2))/(13 - 3*sqrt(2)).

%e (187 + 78*sqrt(2))/151 = 1.96893150904040671395...

%p with(MmaTranslator[Mma]): Digits:=150:

%p RealDigits(evalf((187+78*sqrt(2))/151))[1]; # _Muniru A Asiru_, Apr 08 2018

%t RealDigits[(187+78Sqrt[2])/151,10,120][[1]] (* _Harvey P. Dale_, Apr 29 2011 *)

%o (PARI) (187 + 78*sqrt(2))/151 \\ _G. C. Greubel_, Apr 07 2018

%o (Magma) (187 + 78*Sqrt(2))/151; // _G. C. Greubel_, Apr 07 2018

%Y Cf. A161482, A161483, A002193 (decimal expansion of sqrt(2)), A161485 (decimal expansion of (24723+6758*sqrt(2))/151^2).

%K cons,nonn

%O 1,2

%A _Klaus Brockhaus_, Jun 13 2009