Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #54 Oct 23 2024 01:02:15
%S 9,6,8,9,4,6,1,4,6,2,5,9,3,6,9,3,8,0,4,8,3,6,3,4,8,4,5,8,4,6,9,1,8,6,
%T 0,0,0,6,9,5,4,0,2,6,7,6,8,3,9,0,9,6,1,5,4,4,2,0,1,6,8,1,5,7,4,3,9,4,
%U 9,8,4,1,1,7,0,8,0,3,3,1,3,6,7,3,9,5,9,4,0,7
%N Decimal expansion of L(3, chi4), where L(s, chi4) is the Dirichlet L-function for the non-principal character modulo 4.
%D Bruce C. Berndt, Ramanujan's Notebooks, Part II, Springer-Verlag, 1989. See page 293, Entry 25 (iii).
%D Leonhard Euler, Introductio in Analysin Infinitorum, First Part, Articles 175, 284 and 287.
%D Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20.
%H J. T. Groenman, <a href="https://cms.math.ca/publications/crux/issue?volume=16&issue=2">Problem 1511</a>, Crux Mathematicorum, Vol. 16, No. 2 (1990), p. 43; <a href="https://cms.math.ca/publications/crux/issue?volume=17&issue=3">Solution to Problem 1511</a>, by Beatriz Margolis, ibid., Vol. 17, No. 3 (1991), pp. 92-93.
%H Qing-Hu Hou and Zhi-Wei Sun, <a href="https://arxiv.org/abs/1808.04717">A q-analogue of the identity Sum_{k>=0}(-1)^k/(2k+1)^3 = Pi^3/32</a>, arXiv:1808.04717 [math.CO], 2018.
%H Masato Kobayashi, <a href="https://arxiv.org/abs/2108.01247">Integral representations for zeta(3) with the inverse sine function</a>, arXiv:2108.01247 [math.NT], 2021.
%H Richard J. Mathar, <a href="http://arxiv.org/abs/1008.2547">Table of Dirichlet L-series and prime zeta modulo functions for small moduli</a>, arXiv:1008.2547 [math.NT], 2010-2015, section 2.2 entry L(m=4,r=2,s=3).
%H Michael Penn, <a href="https://www.youtube.com/watch?v=lY9SZpq9khM">An infinite tangent product</a>, YouTube video, 2020.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DirichletBetaFunction.html">Dirichlet Beta Function</a>.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_beta_function">Dirichlet beta function</a>.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%F chi4(k) = Kronecker(-4, k); chi4(k) is 0, 1, 0, -1 when k reduced modulo 4 is 0, 1, 2, 3, respectively; chi4 is A101455.
%F Series: L(3, chi4) = Sum_{k>=1} chi4(k) k^{-3} = 1 - 1/3^3 + 1/5^3 - 1/7^3 + 1/9^3 - 1/11^3 + 1/13^3 - 1/15^3 + ...
%F Series: L(3, chi4) = Sum_{k>=0} tanh((2k+1) Pi/2)/(2k+1)^3. [Ramanujan; see Berndt, page 293]
%F Closed form: L(3, chi4) = Pi^3/32 = 1/A331095.
%F Equals Sum_{n>=0} (-1)^n/(2*n+1)^3. - _Jean-François Alcover_, Mar 29 2013
%F Equals Product_{k>=3} (1 - tan(Pi/2^k)^4) (Groenman, 1990). - _Amiram Eldar_, Apr 03 2022
%F Equals Integral_{x=0..1} arcsinh(x)*arccos(x)/x dx (Kobayashi, 2021). - _Amiram Eldar_, Jun 23 2023
%F From _Amiram Eldar_, Nov 06 2023: (Start)
%F Equals beta(3), where beta is the Dirichlet beta function.
%F Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^3)^(-1). (End)
%e L(3, chi4) = Pi^3/32 = 0.9689461462593693804836348458469186...
%t nmax = 1000; First[ RealDigits[Pi^3/32, 10, nmax] ]
%o (PARI) Pi^3/32 \\ _Michel Marcus_, Aug 15 2018
%Y Cf. A101455, A153072, A153073, A153074.
%Y Cf. A233091, A251809, A331095.
%Y Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
%K nonn,cons,easy
%O 0,1
%A _Stuart Clary_, Dec 17 2008
%E Offset corrected by _R. J. Mathar_, Feb 05 2009