login
A175570
Decimal expansion of the Dirichlet beta function of 6.
12
9, 9, 8, 6, 8, 5, 2, 2, 2, 2, 1, 8, 4, 3, 8, 1, 3, 5, 4, 4, 1, 6, 0, 0, 7, 8, 7, 8, 6, 0, 2, 0, 6, 5, 4, 9, 6, 7, 8, 3, 6, 4, 5, 4, 6, 1, 2, 6, 5, 1, 4, 4, 1, 1, 4, 0, 4, 1, 2, 6, 4, 5, 1, 2, 2, 9, 7, 1, 2, 7, 5, 2, 5, 5, 9, 0, 3, 1, 0, 8, 9, 4, 5, 5, 4, 8, 2, 1, 8, 4, 5, 3, 8, 6, 2, 9, 7, 9, 7, 8, 4, 0, 7, 8, 2
OFFSET
0,1
REFERENCES
L. B. W. Jolley, Summation of Series, Dover, 1961, eq. 308.
LINKS
Richard J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
Eric Weisstein's World of Mathematics, Dirichlet Beta Function.
FORMULA
Equals Sum_{n>=1} A101455(n)/n^6. [see arxiv:1008.2547, L(m=4,r=2,s=6)] [corrected by R. J. Mathar, Feb 01 2018]
Equals (PolyGamma(5, 1/4) - PolyGamma(5, 3/4))/491520. - Jean-François Alcover, Jun 11 2015
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^6)^(-1). - Amiram Eldar, Nov 06 2023
EXAMPLE
0.998685222218438135441600...
MAPLE
DirichletBeta := proc(s) 4^(-s)*(Zeta(0, s, 1/4)-Zeta(0, s, 3/4)) ; end proc: x := DirichletBeta(6) ; x := evalf(x) ;
MATHEMATICA
RealDigits[ DirichletBeta[6], 10, 105] // First (* Jean-François Alcover, Feb 11 2013, updated Mar 14 2018 *)
PROG
(PARI) beta(x)=(zetahurwitz(x, 1/4)-zetahurwitz(x, 3/4))/4^x
beta(6) \\ Charles R Greathouse IV, Jan 31 2018
(PARI) sumpos(n=1, (12288*n^5 - 30720*n^4 + 33280*n^3 - 19200*n^2 + 5808*n - 728)/(16777216*n^12 - 100663296*n^11 + 270532608*n^10 - 429916160*n^9 + 449249280*n^8 - 324796416*n^7 + 166445056*n^6 - 60899328*n^5 + 15793920*n^4 - 2833920*n^3 + 334368*n^2 - 23328*n + 729), 1) \\ Charles R Greathouse IV, Feb 01 2018
CROSSREFS
Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Cf. A101455.
Sequence in context: A346438 A304029 A019896 * A050812 A139345 A231470
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Jul 15 2010
STATUS
approved