The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153072 Continued fraction for L(3, chi4), where L(s, chi4) is the Dirichlet L-function for the non-principal character modulo 4 3
 0, 1, 31, 4, 1, 18, 21, 1, 1, 2, 1, 2, 1, 3, 6, 3, 28, 1, 3, 2, 1, 2, 21, 1, 1, 32, 1, 1, 1, 5, 3, 1, 2, 1, 27, 11, 1, 2, 1, 5, 1, 3, 4, 3, 1, 4, 1, 1, 2, 1, 9, 8, 1, 2, 2, 1, 14, 2, 1, 7, 2, 2, 1, 20, 2, 1, 5, 10, 1, 4, 2, 2, 1, 2, 106, 4, 1, 1, 1, 1, 1, 10, 9, 3, 3, 14 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 175, 284 and 287. Bruce C. Berndt, "Ramanujan's Notebooks, Part II", Springer-Verlag, 1989. See page 293, Entry 25 (iii). LINKS FORMULA chi4(k) = Kronecker(-4, k); chi4(k) is 0, 1, 0, -1 when k reduced modulo 4 is 0, 1, 2, 3, respectively; chi4 is A101455. Series: L(3, chi4) = Sum_{k>=1} chi4(k) k^{-3} = 1 - 1/3^3 + 1/5^3 - 1/7^3 + 1/9^3 - 1/11^3 + 1/13^3 - 1/15^3 + ... Series: L(3, chi4) = Sum_{k>=0} tanh((2k+1) Pi/2)/(2k+1)^3. [Ramanujan; see Berndt, page 293] Closed form: L(3, chi4) = Pi^3/32. EXAMPLE L(3, chi4) = 0.9689461462593693804836348458469186... = [0; 1, 31, 4, 1, 18, 21, 1, 1, 2, 1, 2, 1, 3, 6, 3, 28, ...]. MATHEMATICA nmax = 1000; ContinuedFraction[Pi^3/32, nmax + 1] CROSSREFS Cf. A153071, A153073, A153074. Sequence in context: A128372 A334061 A040942 * A040943 A040944 A040940 Adjacent sequences:  A153069 A153070 A153071 * A153073 A153074 A153075 KEYWORD nonn,cofr,easy AUTHOR Stuart Clary, Dec 17 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 6 13:04 EDT 2021. Contains 343585 sequences. (Running on oeis4.)