login
A086281
Decimal expansion of 4th Stieltjes constant gamma_4.
13
0, 0, 2, 3, 2, 5, 3, 7, 0, 0, 6, 5, 4, 6, 7, 3, 0, 0, 0, 5, 7, 4, 6, 8, 1, 7, 0, 1, 7, 7, 5, 2, 6, 0, 6, 8, 0, 0, 0, 9, 0, 4, 4, 6, 9, 4, 1, 3, 7, 8, 4, 8, 5, 0, 9, 9, 0, 7, 5, 8, 0, 4, 0, 9, 0, 7, 1, 2, 4, 8, 4, 1, 0, 0, 5, 3, 1, 5, 5, 2, 1, 9, 0, 0, 3, 0, 1, 6, 7, 8, 0, 5, 9, 0, 3, 9, 3, 0, 6, 3, 6, 0
OFFSET
0,3
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 166.
LINKS
Krzysztof Maślanka and Andrzej Koleżyński, The High Precision Numerical Calculation of Stieltjes Constants. Simple and Fast Algorithm, arXiv preprint, arXiv:2210.04609 [math.NT], 2022.
Eric Weisstein's World of Mathematics, Stieltjes Constants
FORMULA
Using the abbreviations a = log(z^2 + 1/4)/2, b = arctan(2*z) and c = cosh(Pi*z) then gamma_4 = -(Pi/5)*Integral_{0..infinity} (a^5-10*a^3*b^2+5*a*b^4)/c^2. The general case is for n>=0 (which includes Euler's gamma as gamma_0) gamma_n = (-Pi/ (n+1))*Integral_{0..infinity} sigma(n+1)/c^2, where sigma(n) = Sum_{k=0.. floor(n/2)}(-1)^k*binomial(n,2*k)*b^(2*k)*a^(n-2*k). - Peter Luschny, Apr 19 2018
EXAMPLE
0.0023253...
MATHEMATICA
Join[{0, 0}, RealDigits[ N[ -StieltjesGamma[4], 103]][[1]]] (* Jean-François Alcover, Nov 07 2012 *)
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jul 14 2003
STATUS
approved