This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086280 Decimal expansion of 3rd Stieltjes constant gamma_3. 20
 0, 0, 2, 0, 5, 3, 8, 3, 4, 4, 2, 0, 3, 0, 3, 3, 4, 5, 8, 6, 6, 1, 6, 0, 0, 4, 6, 5, 4, 2, 7, 5, 3, 3, 8, 4, 2, 8, 5, 7, 1, 5, 8, 0, 4, 4, 4, 5, 4, 1, 0, 6, 1, 8, 2, 4, 5, 4, 8, 1, 4, 8, 3, 3, 3, 6, 9, 1, 3, 8, 3, 4, 4, 9, 2, 1, 1, 2, 9, 7, 0, 0, 5, 3, 5, 7, 0, 5, 5, 7, 1, 6, 6, 2, 2, 8, 5, 6, 6, 7, 0, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 166. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Eric Weisstein's World of Mathematics, Stieltjes Constants Wikipedia, Stieltjes constants FORMULA Using the abbreviations a = log(z^2 + 1/4)/2, b = arctan(2*z) and c = cosh(Pi*z) then gamma_3 = -(Pi/4)*Integral_{0..infinity} (a^4 - 6*a^2*b^2+b^4)/c^2. gamma_4 = -(Pi/5)*Integral_{0..infinity} (a^5 - 10*a^3*b^2 + 5*a*b^4) / c^2. The general case is for n>=0 (which includes Euler's gamma as gamma_0) gamma_n = (-Pi/(n+1))* Integral_{0..infinity} sigma(n+1)/c^2, where sigma(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n,2*k)*b^(2*k)*a^(n-2*k). - Peter Luschny, Apr 19 2018 EXAMPLE 0.0020538... MAPLE evalf(gamma(3)) ; # R. J. Mathar, Feb 02 2011 MATHEMATICA Join[{0, 0}, RealDigits[ N[ -StieltjesGamma[3], 103]][[1]]] (* Jean-François Alcover, Nov 07 2012 *) CROSSREFS Cf. A001620, A082633, A086279, A086281, A086282, A183141, A183167, A183206, A184853, A184854. Sequence in context: A095245 A324245 A173732 * A164976 A261745 A083714 Adjacent sequences:  A086277 A086278 A086279 * A086281 A086282 A086283 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Jul 14 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 04:29 EDT 2019. Contains 327995 sequences. (Running on oeis4.)