login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096938
McKay-Thompson series of class 60F for the Monster group.
14
1, 1, 1, 2, 2, 2, 3, 4, 4, 6, 7, 8, 10, 12, 14, 16, 19, 22, 26, 30, 35, 41, 47, 54, 62, 70, 80, 92, 104, 118, 135, 152, 171, 194, 218, 244, 275, 308, 344, 386, 432, 481, 537, 598, 664, 738, 819, 908, 1006, 1114, 1232, 1362, 1503, 1658, 1828, 2012, 2214, 2436, 2676
OFFSET
0,4
COMMENTS
The inverted graded parafermionic partition function.
Also number of partitions of n into parts congruent to {1,3,7,9} mod 10. Also number of partitions of n into odd parts parts in which no part appears more than 4 times.
Number of partitions of n into distinct parts in which no part is a multiple of 5.
This generating function is a generalization of the sequences A003105 and A006950. It arose in my recent work on partial supersymmetry in writing the graded parafermionic partition function in which I obtained a more general formula.
REFERENCES
T. M. Apostol, An Introduction to Analytic Number Theory, Springer-Verlag, NY, 1976
LINKS
Cristina Ballantine and Brooke Feigon, Truncated Theta Series Related to the Jacobi Triple Product Identity, arXiv:2401.04019 [math.CO], 2024. See page 16.
Nayandeep Deka Baruah and Abhishek Sarma, Arithmetic properties of 5-regular partitions into distinct parts, arXiv:2411.02978 [math.NT], 2024. See p. 2.
N. Chair, Partition identities from Partial Supersymmetry, arXiv:hep-th/0409011, 2004.
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 12.
Donald Spector, Duality, partial supersymmetry and arithmetic number theory, arXiv:hep-th/9710002, 1997.
Donald Spector, Duality, partial supersymmetry and arithmetic number theory, J. Math. Phys. Vol. 39, 1998, p. 1919.
FORMULA
Euler transform of period 10 sequence [1, 0, 1, 0, 0, 0, 1, 0, 1, 0, ...]. - Vladeta Jovovic, Aug 19 2004
Expansion of q^(1/6)eta(q^2)eta(q^5)/(eta(q)eta(q^10)) in powers of q.
Given g.f. A(x), then B(x)=(A(x^6)/x)^2 satisfies 0=f(B(x), B(x^2)) where f(u, v)=(u^3+v^3)(1+uv)-uv(1-uv)^2. - Michael Somos, Jan 18 2005
G.f.: 1/product_{k>=1} (1-x^k+x^(2*k)-x^(3*k)+x^(4*k)) = 1/Product_{k>0} P10(x^k) where P10 is the 10th cyclotomic polynomial.
a(n) ~ exp(2*Pi*sqrt(n/15)) / (2 * 15^(1/4) * n^(3/4)) * (1 - (3*sqrt(15)/(16*Pi) + Pi/(6*sqrt(15))) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017
EXAMPLE
a(8)=4, the number of partitions into distinct parts that exclude the number 5 because we can write 8=7+1=6+2=4+3+1.
T60F = 1/q + q^5 + q^11 + 2*q^17 + 2*q^23 + 2*q^29 + 3*q^35 + 4*q^41 +...
MAPLE
series(product(1/(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)), k+1..150), x=0, 100);
MATHEMATICA
CoefficientList[ Series[ Product[1/(1 - x^k + x^(2k) - x^(3k) + x^(4k)), {k, 70}], {x, 0, 60}], x] (* Robert G. Wilson v, Aug 19 2004 *)
nmax = 50; CoefficientList[Series[Product[(1 + x^k) / (1 + x^(5*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
QP = QPochhammer; s = QP[q^2]*(QP[q^5]/(QP[q]*QP[q^10])) + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 12 2015 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)*eta(x^5+A)/eta(x+A)/eta(x^10+A), n))} /* Michael Somos, Jan 18 2005 */
CROSSREFS
Cf. A133563.
Cf. A000700 (m=2), A003105 (m=3), A070048 (m=4), A261770 (m=6), A097793 (m=7), A261771 (m=8), A112193 (m=9), A261772 (m=10).
Sequence in context: A029050 A066920 A035381 * A130084 A017981 A274759
KEYWORD
nonn
AUTHOR
Noureddine Chair, Aug 18 2004
EXTENSIONS
Definition corrected by Vladeta Jovovic, Aug 19 2004
More terms from Robert G. Wilson v, Aug 19 2004
STATUS
approved