login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274759
Modified quadranacci series.
1
0, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 6, 7, 8, 12, 14, 15, 23, 27, 29, 44, 52, 56, 85, 100, 108, 164, 193, 208, 316, 372, 401, 609, 717, 773, 1174, 1382, 1490, 2263, 2664, 2872, 4362, 5135, 5536, 8408, 9898, 10671, 16207, 19079, 20569, 31240, 36776, 39648, 60217, 70888, 76424, 116072, 136641
OFFSET
0,6
LINKS
Ian Bruce, A Modified Tribonacci Sequence, The Fibonacci Quarterly 22, no.3 (1984):244-246
FORMULA
a(3n) = a(3n-3) + a(3n-6) + a(3n-9) + a(3n-12).
a(3n + 2) = a(3n + 1) + a(3n - 2).
a(3n + 3) = a(3n + 1) + a(3n - 1).
a(3n + 4) = a(3n + 1) + a(3n).
G.f.: x*(1 + x + x^2 + x^4 + x^5 + x^8)/(1 - x^3 - x^6 - x^9 - x^12).
MATHEMATICA
CoefficientList[Series[x*(1 + x + x^2 + x^4 + x^5 + x^8)/(1 - x^3 - x^6 - x^9 - x^12), {x, 0, 25}], x] (* or *) LinearRecurrence[{0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1}, {0, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 6}, 50]
PROG
(PARI) concat(0, Vec(x*(1+x+x^2+x^4+x^5+x^8)/(1-x^3-x^6-x^9-x^12) + O(x^99))) \\ Altug Alkan, Jul 04 2016
CROSSREFS
Cf. A213816.
Sequence in context: A096938 A130084 A017981 * A274157 A005863 A015740
KEYWORD
nonn,changed
AUTHOR
G. C. Greubel, Jul 04 2016
STATUS
approved