login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274762
Number of sequences with up to n copies each of 1,2,...,n.
5
1, 2, 19, 5248, 191448941, 1856296498826906, 7843008902239185171370147, 21408941228439913825832318523364743824, 52400635808473472283994952631626957015306076632624953, 152306240915343870544748050434914720360496623911547121447677238156864610
OFFSET
0,2
LINKS
FORMULA
a(n) ~ exp(11/12) * n^(n^2 - n/2 + 1) / (2*Pi)^((n-1)/2). - Vaclav Kotesovec, May 24 2020
EXAMPLE
a(0) = 1: () = the empty sequence.
a(1) = 2: (), 1.
a(2) = 19: (), 1, 2, 11, 12, 21, 22, 112, 121, 122, 211, 212, 221, 1122, 1212, 1221, 2112, 2121, 2211.
MAPLE
b:= proc(n, k, i) option remember; `if`(k=0, 1,
`if`(i<1, 0, add(b(n, k-j, i-1)/j!, j=0..min(k, n))))
end:
a:= n-> add(b(n, k, n)*k!, k=0..n^2):
seq(a(n), n=0..10);
MATHEMATICA
Table[Sum[k!*SeriesCoefficient[Sum[x^j/j!, {j, 0, n}]^n, {x, 0, k}], {k, 0, n^2}], {n, 0, 10}] (* Vaclav Kotesovec, May 24 2020 *)
PROG
(PARI) {a(n) = sum(i=0, n^2, i!*polcoef(sum(j=0, n, x^j/j!)^n, i))} \\ Seiichi Manyama, May 19 2019
CROSSREFS
Row sums of A234574.
Main diagonal of A308292.
Sequence in context: A365050 A024229 A094663 * A091688 A306207 A355466
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 04 2016
STATUS
approved