login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274761
a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 3, a(1) = 2, a(2) = 5.
1
3, 2, 5, 10, 17, 32, 59, 108, 199, 366, 673, 1238, 2277, 4188, 7703, 14168, 26059, 47930, 88157, 162146, 298233, 548536, 1008915, 1855684, 3413135, 6277734, 11546553, 21237422, 39061709, 71845684, 132144815, 243052208, 447042707, 822239730, 1512334645, 2781617082, 5116191457, 9410143184
OFFSET
0,1
COMMENTS
The tetranacci sequence(s) (T(n+3) = T(n+2) + T(n+1) + T(n)) have characteristic roots such that one is real and the other two have imaginary components. The real root is given by r = (1/3)*(1 + x + y), where x = (19 + 3*sqrt(33))^(1/3) and y = (19 - 3*sqrt(33))^(1/3). By increasing the power of this root (r^n) it is found that r^n = (1/3)*( A001644(n) + (1/3)*a(n-1)*(x + y) + (1/3)*A000073(n-2)*(x^2 + y^2)). Similar results can be found for the complex roots.
LINKS
Pin-Yen Lin, De Moivre type identities for the Tribonacci numbers, The Fibonacci Quarterly 26, no.2, (1988), 131-134
FORMULA
a(n) = a(n-1) + a(n-2) + a(n-3).
a(n) = 3*A000073(n) - A000073(n-1).
G.f.: (3 - x)/(1 - x - x^2 - x^3).
EXAMPLE
a(4) = a(3) + a(2) + a(1) = 10 + 5 + 2 = 17. - Michael B. Porter, Jul 05 2016
MATHEMATICA
CoefficientList[Series[(3-x)/(1-x-x^2-x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 1, 1}, {3, 2, 5}, 40]
PROG
(PARI) Vec((3-x)/(1-x-x^2-x^3) + O(x^40)) \\ Altug Alkan, Jul 04 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (3-x)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 23 2019
(Sage) ((3-x)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
(GAP) a:=[3, 2, 5];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
CROSSREFS
Sequence in context: A257981 A128914 A050063 * A100885 A209199 A215328
KEYWORD
nonn
AUTHOR
G. C. Greubel, Jul 04 2016
STATUS
approved