login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 3, a(1) = 2, a(2) = 5.
1

%I #19 Sep 08 2022 08:46:17

%S 3,2,5,10,17,32,59,108,199,366,673,1238,2277,4188,7703,14168,26059,

%T 47930,88157,162146,298233,548536,1008915,1855684,3413135,6277734,

%U 11546553,21237422,39061709,71845684,132144815,243052208,447042707,822239730,1512334645,2781617082,5116191457,9410143184

%N a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 3, a(1) = 2, a(2) = 5.

%C The tetranacci sequence(s) (T(n+3) = T(n+2) + T(n+1) + T(n)) have characteristic roots such that one is real and the other two have imaginary components. The real root is given by r = (1/3)*(1 + x + y), where x = (19 + 3*sqrt(33))^(1/3) and y = (19 - 3*sqrt(33))^(1/3). By increasing the power of this root (r^n) it is found that r^n = (1/3)*( A001644(n) + (1/3)*a(n-1)*(x + y) + (1/3)*A000073(n-2)*(x^2 + y^2)). Similar results can be found for the complex roots.

%H G. C. Greubel, <a href="/A274761/b274761.txt">Table of n, a(n) for n = 0..1000</a>

%H Pin-Yen Lin, <a href="http://www.fq.math.ca/Scanned/26-2/lin.pdf">De Moivre type identities for the Tribonacci numbers</a>, The Fibonacci Quarterly 26, no.2, (1988), 131-134

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1).

%F a(n) = a(n-1) + a(n-2) + a(n-3).

%F a(n) = 3*A000073(n) - A000073(n-1).

%F G.f.: (3 - x)/(1 - x - x^2 - x^3).

%e a(4) = a(3) + a(2) + a(1) = 10 + 5 + 2 = 17. - _Michael B. Porter_, Jul 05 2016

%t CoefficientList[Series[(3-x)/(1-x-x^2-x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 1, 1}, {3, 2, 5}, 40]

%o (PARI) Vec((3-x)/(1-x-x^2-x^3) + O(x^40)) \\ _Altug Alkan_, Jul 04 2016

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (3-x)/(1-x-x^2-x^3) )); // _G. C. Greubel_, Apr 23 2019

%o (Sage) ((3-x)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # _G. C. Greubel_, Apr 23 2019

%o (GAP) a:=[3,2,5];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # _G. C. Greubel_, Apr 23 2019

%Y Cf. A000073, A001644.

%K nonn

%O 0,1

%A _G. C. Greubel_, Jul 04 2016