login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209199
G.f. satisfies: A(x) = 1 + x*A(x)*A(-x) + x^2*A(x)/A(-x).
3
1, 1, 1, 3, 2, 5, 10, 21, 30, 76, 114, 257, 448, 1052, 1706, 4093, 6928, 16284, 28266, 67580, 116288, 278582, 488152, 1168105, 2060388, 4959066, 8772450, 21133812, 37675236, 90901086, 162659624, 393382077, 706479172, 1710430178, 3084264618, 7477512244, 13522121028
OFFSET
0,4
LINKS
FORMULA
G.f. satisfies: 1 - x^4 - y + x^2*y + x^3*y^2 - (x*y^2)/(x^2 - y - x*y^2) = 0, where y = A(x). - Vaclav Kotesovec, Mar 13 2014
a(n) ~ (C(r,s1) - (-1)^n*C(-r,s2)) / (sqrt(Pi) * n^(3/2) * r^n), where {r1 = r = 0.45889975689289..., s1 = 3.7914195980097...} and {r2 = -r, s2 = 0.3725313335801...} are roots of the system of equations r^2*(1 + 2*r*s) = 1 + (2*r*s)/(r^2 - s - r*s^2) + (r*s^2*(1 + 2*r*s))/(-r^2 + s + r*s^2)^2, 1 + r^2*s + r^3*s^2 = r^4 + s + (r*s^2)/(r^2 - s - r*s^2), and C(r,s) = sqrt((r*s^2 - r^2 + s)*(4*r^7 - 11*r^6*s^2 - s^3 - 2*r*s^3 - 3*r^4*s^3*(s^3-6) + 10*r^5*s*(s^3-1) - 8*r^3*s^2*(s^3-1) - r^2*s^2*(7*s^2+1)) / (4*r*(r^7 - 3*r^6*s^2 + s^3 - r*s^3 - r^4*s^3*(s^3-6) + 3*r^5*s*(s^3-1) - 3*r^2*s^2*(s^2+1) + r^3*(3*s^2 - 3*s^5 - 1)))), C(r,s1) = 4.083478805997458527..., C(-r,s2) = 0.26836221180354127... - Vaclav Kotesovec, Mar 13 2014
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 2*x^4 + 5*x^5 + 10*x^6 + 21*x^7 +...
Related series:
A(x)*A(-x) = 1 + x^2 - x^4 + 5*x^6 + 12*x^8 + 25*x^10 + 164*x^12 +...
A(x)/A(-x) = 1 + 2*x + 2*x^2 + 6*x^3 + 10*x^4 + 16*x^5 + 30*x^6 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A*subst(A, x, -x)+x^2*A/subst(A, x, -x+x*O(x^n))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A050063 A274761 A100885 * A215328 A107298 A195104
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 08 2012
STATUS
approved