login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208889
G.f. satisfies: A(x) = 1 + x*A(x)/A(-x) + x^2*A(x)*A(-x).
2
1, 1, 3, 2, 5, -2, 3, -20, -2, -38, 75, 84, 612, 596, 2293, 534, 4722, -6354, 6716, -27696, 44962, -8232, 391279, 310072, 1975046, 906028, 6363470, -2135522, 15639296, -21729494, 57269753, -46268934, 370270484, 130699742, 2081100420, 915348168, 8523787094
OFFSET
0,3
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 2*x^3 + 5*x^4 - 2*x^5 + 3*x^6 - 20*x^7 +...
Related series:
A(x)/A(-x) = 1 + 2*x + 2*x^2 - 2*x^4 - 12*x^5 - 20*x^6 - 38*x^7 - 38*x^8 +...
A(x)*A(-x) = 1 + 5*x^2 + 15*x^4 + 36*x^6 + 87*x^8 + 320*x^10 + 1567*x^12 +...
MATHEMATICA
terms = 37; A[_] = 1; Do[A[x_] = 1 + x*A[x]/A[-x] + x^2*A[x]*A[-x] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 09 2018 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A/subst(A, x, -x+x*O(x^n))+x^2*A*subst(A, x, -x+x*O(x^n))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Cf. A209199.
Sequence in context: A182983 A231146 A287692 * A127750 A112528 A366687
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 09 2012
STATUS
approved