The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A231146 Array of coefficients of numerator polynomials of the rational function p(n, x - 1/x), where p(n,x) is the n-th cyclotomic polynomial. 1
 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 0, -1, 0, 1, 1, -1, -3, 2, 5, -2, -3, 1, 1, 1, 1, -1, -1, 1, 1, -1, -5, 4, 12, -8, -15, 8, 12, -4, -5, 1, 1, 1, 0, -4, 0, 7, 0, -4, 0, 1, 1, 0, -6, -1, 15, 3, -19, -3, 15, 1, -6, 0, 1, 1, 1, -3, -2, 5, 2, -3, -1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,20 COMMENTS If r is a zero of p(n,x) then (1/2)(r +- sqrt(r^2 + 4) are zeros of q(n,x). LINKS Table of n, a(n) for n=0..74. EXAMPLE First 6 rows: 1 -1 .. -1 ... 1 -1 ... 1 ... 1 1 ... -1 .. -1 ... 1 ... 1 1 .... 0 .. -1 ... 0 ... 1 1 ... -1 .. -3 ... 2 ... 5 ... -2 ... -3 ... 1 ... 1 First 4 polynomials: 1, -1 - x + x^2, -1 + x + x^2, 1 - x - x^2 + x^3 + x^4. MATHEMATICA z = 60; p[n_, x_] := p[x] = Cyclotomic[n, x]; Table[p[n, x], {n, 0, z/4}]; f1[n_, x_] := f1[n, x] = Numerator[Factor[p[n, x] /. x -> x - 1/x]]; Table[Expand[f1[n, x]], {n, 0, z/4}] t = Flatten[Table[CoefficientList[f1[n, x], x], {n, 0, z/4}]] CROSSREFS Cf. A230003. Sequence in context: A056008 A074830 A182983 * A287692 A208889 A127750 Adjacent sequences: A231143 A231144 A231145 * A231147 A231148 A231149 KEYWORD tabf,sign,easy AUTHOR Clark Kimberling, Nov 07 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 08:27 EST 2023. Contains 367645 sequences. (Running on oeis4.)