login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A231146 Array of coefficients of numerator polynomials of the rational function p(n, x - 1/x), where p(n,x) is the n-th cyclotomic polynomial. 1
1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 0, -1, 0, 1, 1, -1, -3, 2, 5, -2, -3, 1, 1, 1, 1, -1, -1, 1, 1, -1, -5, 4, 12, -8, -15, 8, 12, -4, -5, 1, 1, 1, 0, -4, 0, 7, 0, -4, 0, 1, 1, 0, -6, -1, 15, 3, -19, -3, 15, 1, -6, 0, 1, 1, 1, -3, -2, 5, 2, -3, -1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,20

COMMENTS

If r is a zero of p(n,x) then (1/2)(r +- sqrt(r^2 + 4) are zeros of q(n,x).

LINKS

Table of n, a(n) for n=0..74.

EXAMPLE

First 6 rows:

1

-1 .. -1 ... 1

-1 ... 1 ... 1

1 ... -1 .. -1 ... 1 ... 1

1 .... 0 .. -1 ... 0 ... 1

1 ... -1 .. -3 ... 2 ... 5 ... -2 ... -3 ... 1 ... 1

First 4 polynomials:  1, -1 - x + x^2, -1 + x + x^2, 1 - x - x^2 + x^3 + x^4.

MATHEMATICA

z = 60; p[n_, x_] := p[x] = Cyclotomic[n, x]; Table[p[n, x], {n, 0, z/4}]; f1[n_, x_] := f1[n, x] = Numerator[Factor[p[n, x] /. x -> x - 1/x]]; Table[Expand[f1[n, x]], {n, 0, z/4}]

t = Flatten[Table[CoefficientList[f1[n, x], x], {n, 0, z/4}]]

CROSSREFS

Cf. A230003.

Sequence in context: A056008 A074830 A182983 * A287692 A208889 A127750

Adjacent sequences:  A231143 A231144 A231145 * A231147 A231148 A231149

KEYWORD

tabf,sign,easy

AUTHOR

Clark Kimberling, Nov 07 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 19:16 EDT 2021. Contains 347717 sequences. (Running on oeis4.)