login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230003
Array of coefficients of numerator polynomials of the rational function p(n, x + 1/x), where p(n,x) is the n-th cyclotomic polynomial.
1
1, 1, -1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 0, 3, 0, 1, 1, 1, 5, 4, 9, 4, 5, 1, 1, 1, -1, 3, -1, 1, 1, 1, 7, 6, 20, 14, 29, 14, 20, 6, 7, 1, 1, 1, 0, 4, 0, 7, 0, 4, 0, 1, 1, 0, 6, 1, 15, 3, 21, 3, 15, 1, 6, 0, 1, 1, -1, 5, -4, 9, -4, 5, -1, 1, 1, 1, 11, 10, 54
OFFSET
0,10
COMMENTS
If r is a zero of p(n,x) then (1/2)(r +- sqrt(r^2 - 4) are zeros of q(n,x).
EXAMPLE
First 6 rows:
1
1 .. - 1 ... 1
1 .... 1 ... 1
1 .... 1 ... 3 ... 1 ... 1
1 .... 0 ... 3 ... 0 ... 1
1 .... 1 ... 5 ... 4 ... 9 ... 4 ... 5 ... 1 ... 1
First 4 polynomials: 1, 1 - x + x^2, 1 + x + x^2, 1 + x + 3*x^2 + x^3 + x^4.
MATHEMATICA
z = 60; p[n_, x_] := p[x] = Cyclotomic[n, x]; Table[p[n, x], {n, 0, z/4}]; f1[n_, x_] := f1[n, x] = Numerator[Factor[p[n, x] /. x -> x + 1/x]]; Table[Expand[f1[n, x]], {n, 0, z/4}]
t = Flatten[Table[CoefficientList[f1[n, x], x], {n, 0, z/4}]]
CROSSREFS
Cf. A231146.
Sequence in context: A241499 A236774 A110245 * A136093 A206831 A304222
KEYWORD
tabf,sign,easy
AUTHOR
Clark Kimberling, Nov 07 2013
STATUS
approved