login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206831
Triangle T(n,k), read by rows, given by (1, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
1
1, 1, 1, -1, 0, 1, -1, -3, -1, 1, 1, 0, -4, -2, 1, 1, 5, 4, -4, -3, 1, -1, 0, 9, 10, -3, -4, 1, -1, -7, -9, 9, 17, -1, -5, 1, 1, 0, -16, -28, 2, 24, 2, -6, 1, 1, 9, 16, -16, -54, -14, 30, 6, -7, 1, -1, 0, 25, 60, 10
OFFSET
0,8
COMMENTS
Riordan array ((1+x)/(1+x^2), x*(1-x)/(1+x^2)).
Antidiagonal sums are A010892(n).
LINKS
Indranil Ghosh, Rows 0..100, flattened
FORMULA
T(n,k) = T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), n>1.
G.f.: (1+x)/(1-y*x+(1+y)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A057077(n), (-1)^n*A078050(n) for x = -1, 0, 1 respectively.
EXAMPLE
Triangle begins :
1
1, 1
-1, 0, 1
-1, -3, -1, 1
1, 0, -4, -2, 1
1, 5, 4, -4, -3, 1
-1, 0, 9, 10, -3, -4, 1
-1, -7, -9, 9, 17, -1, -5, 1
1, 0, -16, -28, 2, 24, 2, -6, 1
1, 9, 16, -16, -54, -14, 30, 6, -7, 1
-1, 0, 25, 60, 10, -80, -40, 34, 11, -8, 1
MATHEMATICA
nmax=10; Flatten[CoefficientList[Series[CoefficientList[Series[(1 + x)/(1 - y*x + (1 + y)*x^2), {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 10 2017 *)
CROSSREFS
KEYWORD
easy,sign,tabl
AUTHOR
Philippe Deléham, Feb 13 2012
STATUS
approved